Search results for: 2035 vision
515 Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach
Authors: Niaz Gharavi, Hexin Zhang
Abstract:
The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus.Keywords: shear field test method, structural-sized test, shear modulus of Glulam beam, photogrammetry approach
Procedia PDF Downloads 291514 Advanced Eales’ Disease with Neovascular Glaucoma at First Presentation: Case Report
Authors: Mohammed A. Alfayyadh, Halla A. AlAbdulhadi, Mahdi H. Almubarak
Abstract:
Purpose: Eales’ disease is an idiopathic vasculitis that affects the peripheral retina. It is characterized by recurrent vitreous hemorrhage as a complication of retinal neovascularization. It is more prevalent in India and affects young males. Here we present a patient with neovascular glaucoma as a rare first presentation of Eales’ disease. Observations: This is a 24-year-old Indian gentleman, who complained of a sudden decrease in vision in the left eye over less than 24 hours, along with frontal headache and eye pain for the last three weeks. Ocular examination revealed peripheral retinal ischemia in the right eye, very high intraocular pressure, rubeosis iridis, vitreous hemorrhage and extensive retinal ischemia in the left eye, vascular sheathing and neovascularization in both eyes. Purified protein derivative skin test was positive. The patient was managed with anti-glaucoma, intravitreal anti-vascular endothelial growth factor and laser photocoagulation. Systemic steroids and anti-tuberculous therapy were also initiated. Conclusions: Neovascular glaucoma is an infrequent complication of Eales’ disease. However, the lack of early detection of the disease in the early stages might lead to such serious complication.Keywords: case report, Eales’ disease, mycobacterium tuberculosis, neovascular glaucoma
Procedia PDF Downloads 127513 Measuring Delay Using Software Defined Networks: Limitations, Challenges, and Suggestions for Openflow
Authors: Ahmed Alutaibi, Ganti Sudhakar
Abstract:
Providing better Quality-of-Service (QoS) to end users has been a challenging problem for researchers and service providers. Building applications relying on best effort network protocols hindered the adoption of guaranteed service parameters and, ultimately, Quality of Service. The introduction of Software Defined Networking (SDN) opened the door for a new paradigm shift towards a more controlled programmable configurable behavior. Openflow has been and still is the main implementation of the SDN vision. To facilitate better QoS for applications, the network must calculate and measure certain parameters. One of those parameters is the delay between the two ends of the connection. Using the power of SDN and the knowledge of application and network behavior, SDN networks can adjust to different conditions and specifications. In this paper, we use the capabilities of SDN to implement multiple algorithms to measure delay end-to-end not only inside the SDN network. The results of applying the algorithms on an emulated environment show that we can get measurements close to the emulated delay. The results also show that depending on the algorithm, load on the network and controller can differ. In addition, the transport layer handshake algorithm performs best among the tested algorithms. Out of the results and implementation, we show the limitations of Openflow and develop suggestions to solve them.Keywords: software defined networking, quality of service, delay measurement, openflow, mininet
Procedia PDF Downloads 165512 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).Keywords: activation function, universal approximation function, neural networks, convergence
Procedia PDF Downloads 158511 Ocular Complications, Adverse Effects of the Procedure, Side-effects of Medications Used for Graft Survival, and Preventable Vision Loss in Live-related Renal Transplant Recipients: Experience at a Transplant Centre in Pakistan
Authors: Fatema Ali Lanewala, Akhtar Jamal Khan
Abstract:
The ocular complications in renal transplant recipients at the biggest transplant center in Pakistan were seen to be diverse, multiple, and sight-threatening. These complications could mainly be due to the primary disease causing renal failure, the process of transplantation, and/or the medications used pre and post-transplantation. A retrospective case series recently published in the Journal of Pakistan Medical Association highlights the common ocular pathologies encountered in renal transplant population. Majority of the patients suffered from cataract, which is a known side-effect of long-term steroids routinely used for graft survival. There was a unique finding in Pakistani population, never reported before from any other transplant centre world over; a large number of recipients was reported to be suffering from night blindness, which significantly improved on vitamin A supplementation. There were a variety of other ocular complications seen which emphasizes the necessity of ocular care and routine examination of transplant recipient’s eyes by an ophthalmologist in order to avoid visual compromise and improve the quality of life of the transplant recipient.Keywords: cataract, night blindness, ocular complications, renal transplantation
Procedia PDF Downloads 106510 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 384509 Human-Computer Interaction Pluriversal Framework for Ancestral Medicine App in Bogota: Asset-Based Design Case Study
Authors: Laura Niño Cáceres, Daisy Yoo, Caroline Hummels
Abstract:
COVID-19 accelerated digital healthcare technology usage in many countries, such as Colombia, whose digital healthcare vision and projects are proof of this. However, with a significant cultural indigenous and Afro-Colombian heritage, only some parts of the country are willing to follow the proposed digital Western approach to health. Our paper presents the national healthcare system’s digital narrative, which we contrast with the micro-narrative of an Afro-Colombian ethnomedicine unit in Bogota called Kilombo Yumma. This ethnomedical unit is building its mobile app to safeguard and represent its ancestral medicine practices in local and national healthcare information systems. Kilombo Yumma is keen on promoting their beliefs and practices, which have been passed on through oral traditions and currently exist in the hands of a few older women. We unraveled their ambition, core beliefs, and practices through asset-based design. These assets outlined pluriversal and decolonizing forms of digital healthcare to increase social justice and connect Western and ancestral medicine digital opportunities through HCI.Keywords: asset-based design, mobile app, decolonizing HCI, Afro-Colombian ancestral medicine
Procedia PDF Downloads 79508 Giftedness Cloud Model: A Psychological and Ecological Vision of Giftedness Concept
Authors: Rimeyah H. S. Almutairi, Alaa Eldin A. Ayoub
Abstract:
The aim of this study was to identify empirical and theoretical studies that explored giftedness theories and identification. In order to assess and synthesize the mechanisms, outcomes, and impacts of gifted identification models. Thus, we sought to provide an evidence-informed answer to how does current giftedness theories work and effectiveness. In order to develop a model that incorporates the advantages of existing models and avoids their disadvantages as much as possible. We conducted a systematic literature review (SLR). The disciplined analysis resulted in a final sample consisting of 30 appropriate searches. The results indicated that: (a) there is no uniform and consistent definition of Giftedness; (b) researchers are using several non-consistent criteria to detect gifted, and (d) The detection of talent is largely limited to early ages, and there is obvious neglect of adults. This study contributes to the development of Giftedness Cloud Model (GCM) which defined as a model that attempts to interpretation giftedness within an interactive psychological and ecological framework. GCM aims to help a talented to reach giftedness core and manifestation talent in creative productivity or invention. Besides that, GCM suggests classifying giftedness into four levels of mastery, excellence, creative productivity, and manifestation. In addition, GCM presents an idea to distinguish between talent and giftedness.Keywords: giftedness cloud model, talent, systematic literature review, giftedness concept
Procedia PDF Downloads 167507 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 470506 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 111505 An Ethnographic Study: Ineffective Management of a Social Enterprise
Authors: Sylvia Acquah
Abstract:
The assumption that social enterprises are empowering has strong theoretical support, but empirical verification is anecdotal at best. Social enterprises blend social goal with an enterprising idea and therefore in theory these enterprises should provide meaningful jobs that are empowering. Whether jobs created are meaningful, or whether these organizations are practicing social entrepreneurship remains unexplored key questions. This paper addresses these key questions through a comprehensive literature review and an ethnographical study of a Domiciliary Home Care Social Enterprise in the UK. The social entrepreneurs, management and 9 staff members were observed, interviewed and achieves were reviewed and analyzed. In this study, the social entrepreneur’s vision was lost in transition during management change and the organization was only identified as a social enterprise by name. The organization that was set up to tackle lack of continuity in care and create a family of independent carers, was eventually closed down overnight and subjected to investigation by social services and the local council. Also, the ineffectiveness of the organization led to staff being stressed and without the support of the management to help rectify the issues; staff started displaying symptoms of burnout. Social enterprise managers should not only focus on profit maximization or generation, but should equally live up to the core tenets of the enterprise and effectively communicate and gain buy-in of all employees for any changes. Further, there ought to be an independent organization that regulates social enterprises to ensure that they are adhering to their social goals.Keywords: ethnography, carer, social, enterprise
Procedia PDF Downloads 317504 Mailchimp AI Application For Marketing Employees
Authors: Alia El Akhrass, Raheed Al Jifri, Sara Babalghoum, Jana Bushnag
Abstract:
This project delves into exploring the functionalities of Mailchimp, an artificial intelligence application. The objective is to comprehend its operations through the AI tools it offers. To achieve this, a survey was conducted among peers, seeking insights into Mailchimp's functionality, accessibility, efficiency, and overall benefits. The survey aimed to gather valuable feedback for analysis. Subsequently, a thorough analysis of the collected data was performed to identify trends, patterns, and areas of improvement. Visual representations were then crafted to effectively summarize the findings, aiding in conveying the research outcomes clearly. Founded in 2001, Mailchimp initially provided email marketing services but has since expanded into a comprehensive marketing platform. Its focus on simplicity and accessibility has contributed to its success among businesses of all sizes. Alternative platforms such as Constant Contact, AWeber, and GetResponse offer similar services with their own unique strengths. Mailchimp's journey exemplifies the importance of vision and adaptability in the ever-evolving digital marketing landscape. By prioritizing innovation, user-centricity, and customer service, Mailchimp has established itself as a trusted partner in the field of digital marketing, enabling businesses to effectively connect with their customers and achieve their marketing goals.Keywords: email marketing, ai tool, connect, communicate, generate
Procedia PDF Downloads 40503 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 123502 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 123501 Colour Quick Response Code with High Damage Resistance Capability
Authors: Minh Nguyen
Abstract:
Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes.Keywords: QR code, computer vision, image processing, 2D barcode
Procedia PDF Downloads 118500 Closed-Loop Audit of the Degree of the Management of Thrombocytosis in Accordance with Nice Guidance at Roseneath General Practice
Authors: Georgia Mills, Rachel Parsonage
Abstract:
Thrombocytosis is a platelet count above the upper limit of the normal range. An urgent referral is advised for counts over 1000 x109 and if the count is between 600-1000 x109 with certain conditions/age. A non-urgent referral is warranted when the level is above 450 × 109/L (for more than 3 months) or over 600 × 109/L on at least two occasions (4–6 weeks apart) or within the range 450–600 × 109/L with other haematological abnormalities. The aim of this audit is the assess how well Roseneath's general practice has adhered to the National Institute for Health and Care Excellence (NICE) guidelines for investigations and management of high platelet counts. Through the filtering tool on Vision, all blood results in the surgery were filtered to only show those with a platelet count above 450 x 109 /L. These patients were then analyzed individually to see where they fall on the current NICE guidance pathway for management. The investigations and management of thrombocytosis were generally poor. 60% of those who needed an urgent referral did not have it done. 30% of those who needed a follow-up blood test did not have it done. 60% of those needing a routine referral from complete investigations did not have it done. To improve the knowledge of NICE guidelines within the practice, a teaching session was delivered. Percentages then reached 100% in the 2nd audit. There is a lack of awareness of guidelines and education on thrombocytosis in primary care. Teaching sessions will benefit outcomes greatlyKeywords: platelets, thrombocytosis, management, referral
Procedia PDF Downloads 63499 Potential of Visualization and Information Modeling on Productivity Improvement and Cost Saving: A Case Study of a Multi-Residential Construction Project
Authors: Sara Rankohi, Lloyd Waugh
Abstract:
Construction sites are information saturated. Digitalization is hitting construction sites to meet the incredible demand of knowledge sharing and information documentations. From flying drones, 3D Lasers scanners, pocket mobile applications, to augmented reality glasses and smart helmet, visualization technologies help real-time information imposed straight onto construction professional’s field of vision. Although these technologies are very applicable and can have the direct impact on project cost and productivity, experience shows that only a minority of construction professionals quickly adapt themselves to benefit from them in practice. The majority of construction managers still tend to apply traditional construction management methods. This paper investigates a) current applications of visualization technologies in construction projects management, b) the direct effect of these technologies on productivity improvement and cost saving of a multi-residential building project via a case study on Mac Taggart Senior Care project located in Edmonton, Alberta. The research shows the imaged based technologies have a direct impact on improving project productivity and cost savings.Keywords: image-based technologies, project management, cost, productivity improvement
Procedia PDF Downloads 360498 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 143497 Real-Time Fitness Monitoring with MediaPipe
Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola
Abstract:
In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback
Procedia PDF Downloads 66496 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 96495 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card
Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi
Abstract:
In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.Keywords: blockchain, decentralized system, fingerprint impression, identity management, iris scan
Procedia PDF Downloads 128494 Economies of Scale of Worker's Continuing Professional Development in Selected Universities in South- South, Nigeria
Authors: Jonathan E. Oghenekohwo
Abstract:
The return to scale constitutes a significant investment index in the determination of the quantum of resources that is deployed in investment decision on worker’s continuing professional development. Such investment decision is always predicted on the expected outcomes to the individual, institution and the society in context. Several investments in the development of human capacity on the job have been made, but the return to the scale of such seems not to have been correlated positively with the quantum of resources invested in terms of productivity and performance among workers in many universities. This paper thus found out that, despite the commitment and policy instrument to avail workers the right of continuing professional development, the multiplier effects are not evident in diligence, commitment, honesty, dedication, productivity and improved performance on the job among most administrative staff in Nigerian Universities This author, therefore concludes that, given the policy on the right of workers to get trained on-the job, the outcomes of such training must reflect on the overall performance indices, otherwise, institutions should carry out a forensic analysis of the types of continuing professional development programmes that workers participate in, whether or not, they are consistent with the vision and mission of the institutions in terms of economies of scale of workers professional development to the individual, institution and the nation in context.Keywords: continuing, professional development, economies of scale, worker’s education, administrative staff
Procedia PDF Downloads 326493 Asian Cinema and Hollywood Remakes: Cultural Hybridization, Convergence and Partition in the Age of Global Capitalism
Authors: Chan Ka Lok Sobel
Abstract:
Recently, several famous Asian films have been remade in North America, set in the context of U.S. society and with the financial and cultural scale of Hollywood cinema. Notably, the practice of remaking films is interactive, with famous Hollywood films also being remade in Asia; for example, Charlie’s Angels (McG, 2002) was remade as So Close (Yuen, 2002), Seven (Fincher, 1995) was remade as Double Vision (Fu, 2002), and Cellular (Ellis, 2004) was remade as Connected (Chan, 2008). Conversely, Asian films such as Infernal Affairs (Lau & Mak, 2002), il Mare (Lee, 2000), and Bangkok Dangerous (Pang, 2000) were remade into Hollywood blockbuster films The Departed (Scorsese, 2006), The Lake House (Agresti, 2006), and Bangkok Dangerous (Pang, 2007), respectively. This research examined Asian cinema and Hollywood remakes from the perspective of cultural hybridization and partition in the context of global capitalism and postmodernism. Using Infernal Affairs and The Departed as a case study, key concepts such as crosscultural adaptation, intercultural and global communication competence, and cultural identity and authorship were compared and analyzed.Keywords: remake and originality, double cultural identity, studio system, genre and authorship
Procedia PDF Downloads 134492 Case Report: Ocular Helminth - In Unusual Site (Lens)
Authors: Chandra Shekhar Majumder, Md. Shamsul Haque, Khondaker Anower Hossain, Md. Rafiqul Islam
Abstract:
Introduction: Ocular helminths are parasites that infect the eye or its adnexa. They can be either motile worms or sessile worms that form cysts. These parasites require two hosts for their life cycle, a definite host (usually a human) and an intermediate host (usually an insect). While there have been reports of ocular helminths infecting various structures of the eye, including the anterior chamber and subconjunctival space, there is no previous record of such a case involving the lens. Research Aim: The aim of this case report is to present a rare case of ocular helminth infection in the lens and to contribute to the understanding of this unusual site of infection. Methodology: This study is a case report, presenting the details and findings of an 80-year-old retired policeman who presented with severe pain, redness, and vision loss in the left eye. The patient had a history of diabetes mellitus and hypertension. The examination revealed the presence of a thread-like helminth in the lens. The patient underwent treatment and follow-up, and the helminth specimen was sent for identification to the department of Parasitology. Case report: An 80-year-old retired policeman attended the OPD, Faridpur Medical College Hospital with the complaints of severe pain, redness and gross dimness of vision of the left eye for 5 days. He had a history of diabetes mellitus and hypertension for 3 years. On examination, L/E visual acuity was PL only, moderate ciliary congestion, KP 2+, cells 2+ and posterior synechia from 5 to 7 O’clock position was found. Lens was opaque. A thread like helminth was found under the anterior of the lens. The worm was moving and changing its position during examination. On examination of R/E, visual acuity was 6/36 unaided, 6/18 with pinhole. There was lental opacity. Slit-lamp and fundus examination were within normal limit. Patient was admitted in Faridpur Medical College Hospital. Diabetes mellitus was controlled with insulin. ICCE with PI was done on the same day of admission under depomedrol coverage. The helminth was recovered from the lens. It was thread like, about 5 to 6 mm in length, 1 mm in width and pinkish in colour. The patient followed up after 7 days, VA was HM, mild ciliary congestion, few KPs and cells were present. Media was hazy due to vitreous opacity. The worm was sent to the department of Parasitology, NIPSOM, Dhaka for identification. Findings: The findings of this case report highlight the presence of a helminth in the lens, which has not been previously reported. The helminth was successfully removed from the lens, but the patient experienced complications such as anterior uveitis and vitreous opacity. The exact mechanism by which the helminth enters the lens remains unclear. Theoretical Importance: This case report contributes to the existing literature on ocular helminth infections by reporting a unique case involving the lens. It highlights the need for further research to understand the pathogenesis and mechanism of entry of helminths in the lens. Data Collection and Analysis Procedures: The data for this case report were collected through clinical examination and medical records of the patient. The findings were described and presented in a descriptive manner. No statistical analysis was conducted. Question Addressed: This case report addresses the question of whether ocular helminth infections can occur in the lens, which has not been previously reported. Conclusion: To the best of our knowledge, this is the first reported case of ocular helminth infection in the lens. The presence of the helminth in the lens raises interesting questions regarding its pathogenesis and entry mechanism. Further study and research are needed to explore these aspects. Ophthalmologists and parasitologists should be aware of the possibility of ocular helminth infections in unusual sites like the lens.Keywords: ocular, helminth, unsual site, lens
Procedia PDF Downloads 66491 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 339490 Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form
Abstract:
The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people.Keywords: crowded severity, multi-agent, pedestrian preference, urban space design
Procedia PDF Downloads 219489 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 613488 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 232487 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.
Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis
Abstract:
Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8
Procedia PDF Downloads 113486 Wearable Interface for Telepresence in Robotics
Authors: Uriel Martinez-Hernandez, Luke W. Boorman, Hamideh Kerdegari, Tony J. Prescott
Abstract:
In this paper, we present architecture for the study of telepresence, immersion and human-robot interaction. The architecture is built around a wearable interface, developed here, that provides the human with visual, audio and tactile feedback from a remote location. We have chosen to interface the system with the iCub humanoid robot, as it mimics many human sensory modalities, such as vision, with gaze control and tactile feedback. This allows for a straightforward integration of multiple sensory modalities, but also offers a more complete immersion experience for the human. These systems are integrated, controlled and synchronised by an architecture developed for telepresence and human-robot interaction. Our wearable interface allows human participants to observe and explore a remote location, while also being able to communicate verbally with humans located in the remote environment. Our approach has been tested from local, domestic and business venues, using wired, wireless and Internet based connections. This has involved the implementation of data compression to maintain data quality to improve the immersion experience. Initial testing has shown the wearable interface to be robust. The system will endow humans with the ability to explore and interact with other humans at remote locations using multiple sensing modalities.Keywords: telepresence, telerobotics, human-robot interaction, virtual reality
Procedia PDF Downloads 290