Search results for: ground motion modeling
792 Genomic Resilience and Ecological Vulnerability in Coffea Arabica: Insights from Whole Genome Resequencing at Its Center of Origin
Authors: Zewdneh Zana Zate
Abstract:
The study focuses on the evolutionary and ecological genomics of both wild and cultivated Coffea arabica L. at its center of origin, Ethiopia, aiming to uncover how this vital species may withstand future climate changes. Utilizing bioclimatic models, we project the future distribution of Arabica under varied climate scenarios for 2050 and 2080, identifying potential conservation zones and immediate risk areas. Through whole-genome resequencing of accessions from Ethiopian gene banks, this research assesses genetic diversity and divergence between wild and cultivated populations. It explores relationships, demographic histories, and potential hybridization events among Coffea arabica accessions to better understand the species' origins and its connection to parental species. This genomic analysis also seeks to detect signs of natural or artificial selection across populations. Integrating these genomic discoveries with ecological data, the study evaluates the current and future ecological and genomic vulnerabilities of wild Coffea arabica, emphasizing necessary adaptations for survival. We have identified key genomic regions linked to environmental stress tolerance, which could be crucial for breeding more resilient Arabica varieties. Additionally, our ecological modeling predicted a contraction of suitable habitats, urging immediate conservation actions in identified key areas. This research not only elucidates the evolutionary history and adaptive strategies of Arabica but also informs conservation priorities and breeding strategies to enhance resilience to climate change. By synthesizing genomic and ecological insights, we provide a robust framework for developing effective management strategies aimed at sustaining Coffea arabica, a species of profound global importance, in its native habitat under evolving climatic conditions.Keywords: coffea arabica, climate change adaptation, conservation strategies, genomic resilience
Procedia PDF Downloads 39791 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 88790 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 114789 Investigating Role of Novel Molecular Players in Forebrain Roof-Plate Midline Invagination
Authors: Mohd Ali Abbas Zaidi, Meenu Sachdeva, Jonaki Sen
Abstract:
In the vertebrate embryo, the forebrain anlagen develops from the anterior-most region of the neural tube which is the precursor of the central nervous system (CNS). The roof plate located at the dorsal midline region of the forebrain anlagen, acts as a source of several secreted molecules involved in patterning and morphogenesis of the forebrain. One such key morphogenetic event is the invagination of the forebrain roof plate which results in separation of the single forebrain vesicle into two cerebral hemispheres. Retinoic acid (RA) signaling plays a key role in this process. Blocking RA signaling at the dorsal forebrain midline inhibits dorsal invagination and results in the absence of certain key features of this region, such as thinning of the neuroepithelium and a lowering of cell proliferation. At present we are investigating the possibility of other signaling pathways acting in concert with RA signaling to regulate this process. We have focused on BMP signaling, which we found to be active in a mutually exclusive domain to that of RA signaling within the roof plate. We have also observed that there is a change in BMP signaling activity on modulation of RA signaling indicating an antagonistic relationship between the two. Moreover, constitutive activation of BMP signaling seems to completely inhibit thinning and partially affect invagination, leaving the lowering of cell proliferation in the midline unaffected. We are employing in-silico modeling as well as molecular manipulations to investigate the relative contribution if any, of regional differences in rates of cell proliferation and thinning of the neuroepithelium towards the process of invagination. We have found expression of certain cell adhesion molecules in forebrain roof-plate whose mRNA localization across the thickness of neuroepithelium is influenced by Bmp and RA signaling, giving regional rigidity to roof plate and assisting invagination. We also found expression of certain cytoskeleton modifiers in a localized small domains in invaginating forebrain roof plate suggesting that midline invagination is under control of many factors.Keywords: bone morphogenetic signaling, cytoskeleton, cell adhesion molecules, forebrain roof plate, retinoic acid signaling
Procedia PDF Downloads 153788 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation
Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran
Abstract:
In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility
Procedia PDF Downloads 395787 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 210786 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 147785 Process Evaluation for a Trienzymatic System
Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening
Abstract:
Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development
Procedia PDF Downloads 333784 Numerical Analysis of Gas-Particle Mixtures through Pipelines
Authors: G. Judakova, M. Bause
Abstract:
The ability to model and simulate numerically natural gas flow in pipelines has become of high importance for the design of pipeline systems. The understanding of the formation of hydrate particles and their dynamical behavior is of particular interest, since these processes govern the operation properties of the systems and are responsible for system failures by clogging of the pipelines under certain conditions. Mathematically, natural gas flow can be described by multiphase flow models. Using the two-fluid modeling approach, the gas phase is modeled by the compressible Euler equations and the particle phase is modeled by the pressureless Euler equations. The numerical simulation of compressible multiphase flows is an important research topic. It is well known that for nonlinear fluxes, even for smooth initial data, discontinuities in the solution are likely to occur in finite time. They are called shock waves or contact discontinuities. For hyperbolic and singularly perturbed parabolic equations the standard application of the Galerkin finite element method (FEM) leads to spurious oscillations (e.g. Gibb's phenomenon). In our approach, we use stabilized FEM, the streamline upwind Petrov-Galerkin (SUPG) method, where artificial diffusion acting only in the direction of the streamlines and using a special treatment of the boundary conditions in inviscid convective terms, is added. Numerical experiments show that the numerical solution obtained and stabilized by SUPG captures discontinuities or steep gradients of the exact solution in layers. However, within this layer the approximate solution may still exhibit overshoots or undershoots. To suitably reduce these artifacts we add a discontinuity capturing or shock capturing term. The performance properties of our numerical scheme are illustrated for two-phase flow problem.Keywords: two-phase flow, gas-particle mixture, inviscid two-fluid model, euler equation, finite element method, streamline upwind petrov-galerkin, shock capturing
Procedia PDF Downloads 310783 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings
Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter
Abstract:
The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains
Procedia PDF Downloads 210782 Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia
Authors: Andi Setiawan, Annisa Ulfah Pristya
Abstract:
Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber
Procedia PDF Downloads 446781 Non-linear Model of Elasticity of Compressive Strength of Concrete
Authors: Charles Horace Ampong
Abstract:
Non-linear models have been found to be useful in modeling the elasticity (measure of degree of responsiveness) of a dependent variable with respect to a set of independent variables ceteris paribus. This constant elasticity principle was applied to the dependent variable (Compressive Strength of Concrete in MPa) which was found to be non-linearly related to the independent variable (Water-Cement ratio in kg/m3) for given Ages of Concrete in days (3, 7, 28) at different levels of admixtures Superplasticizer (in kg/m3), Blast Furnace Slag (in kg/m3) and Fly Ash (in kg/m3). The levels of the admixtures were categorized as: S1=Some Plasticizer added & S0=No Plasticizer added; B1=some Blast Furnace Slag added & B0=No Blast Furnace Slag added; F1=Some Fly Ash added & F0=No Fly Ash added. The number of observations (samples) used for the research was one-hundred and thirty-two (132) in all. For Superplasticizer, it was found that Compressive Strength of Concrete was more elastic with regards to Water-Cement ratio at S1 level than at S0 level for the given ages of concrete 3, 7and 28 days. For Blast Furnace Slag, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for concrete ages 3, 7 and 28 days. For Fly Ash, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for Ages 3, 7 and 28 days. The research also tested for different combinations of the levels of Superplasticizer, Blast Furnace Slag and Fly Ash. It was found that Compressive Strength elasticity with regards to Water-Cement ratio was lowest (Elasticity=-1.746) with a combination of S0, B0 and F0 for concrete age of 3 days. This was followed by Elasticity of -1.611 with a combination of S0, B0 and F0 for a concrete of age 7 days. Next, the highest was an Elasticity of -1.414 with combination of S0, B0 and F0 for a concrete age of 28 days. Based on preceding outcomes, three (3) non-linear model equations for predicting the output elasticity of Compressive Strength of Concrete (in %) or the value of Compressive Strength of Concrete (in MPa) with regards to Water to Cement was formulated. The model equations were based on the three different ages of concrete namely 3, 7 and 28 days under investigation. The three models showed that higher elasticity translates into higher compressive strength. And the models revealed a trend of increasing concrete strength from 3 to 28 days for a given amount of water to cement ratio. Using the models, an increasing modulus of elasticity from 3 to 28 days was deduced.Keywords: concrete, compressive strength, elasticity, water-cement
Procedia PDF Downloads 291780 Assessment of Influence of Short-Lasting Whole-Body Vibration on Joint Position Sense and Body Balance–A Randomised Masked Study
Authors: Anna Slupik, Anna Mosiolek, Sebastian Wojtowicz, Dariusz Bialoszewski
Abstract:
Introduction: Whole-body vibration (WBV) uses high frequency mechanical stimuli generated by a vibration plate and transmitted through bone, muscle and connective tissues to the whole body. Research has shown that long-term vibration-plate training improves neuromuscular facilitation, especially in afferent neural pathways, responsible for the conduction of vibration and proprioceptive stimuli, muscle function, balance and proprioception. Some researchers suggest that the vibration stimulus briefly inhibits the conduction of afferent signals from proprioceptors and can interfere with the maintenance of body balance. The aim of this study was to evaluate the influence of a single set of exercises associated with whole-body vibration on the joint position sense and body balance. Material and methods: The study enrolled 55 people aged 19-24 years. These individuals were randomly divided into a test group (30 persons) and a control group (25 persons). Both groups performed the same set of exercises on a vibration plate. The following vibration parameters: frequency of 20Hz and amplitude of 3mm, were used in the test group. The control group performed exercises on the vibration plate while it was off. All participants were instructed to perform six dynamic exercises lasting 30 seconds each with a 60-second period of rest between them. The exercises involved large muscle groups of the trunk, pelvis and lower limbs. Measurements were carried out before and immediately after exercise. Joint position sense (JPS) was measured in the knee joint for the starting position at 45° in an open kinematic chain. JPS error was measured using a digital inclinometer. Balance was assessed in a standing position with both feet on the ground with the eyes open and closed (each test lasting 30 sec). Balance was assessed using Matscan with FootMat 7.0 SAM software. The surface of the ellipse of confidence and front-back as well as right-left swing were measured to assess balance. Statistical analysis was performed using Statistica 10.0 PL software. Results: There were no significant differences between the groups, both before and after the exercise (p> 0.05). JPS did not change in both the test (10.7° vs. 8.4°) and control groups (9.0° vs. 8.4°). No significant differences were shown in any of the test parameters during balance tests with the eyes open or closed in both the test and control groups (p> 0.05). Conclusions. 1. Deterioration in proprioception or balance was not observed immediately after the vibration stimulus. This suggests that vibration-induced blockage of proprioceptive stimuli conduction can have only a short-lasting effect that occurs only as long as a vibration stimulus is present. 2. Short-term use of vibration in treatment does not impair proprioception and seems to be safe for patients with proprioceptive impairment. 3. These results need to be supplemented with an assessment of proprioception during the application of vibration stimuli. Additionally, the impact of vibration parameters used in the exercises should be evaluated.Keywords: balance, joint position sense, proprioception, whole body vibration
Procedia PDF Downloads 326779 Research on Evaluation of Renewable Energy Technology Innovation Strategy Based on PMC Index Model
Abstract:
Renewable energy technology innovation is an important way to realize the energy transformation. Our government has issued a series of policies to guide and support the development of renewable energy. The implementation of these policies will affect the further development, utilization and technological innovation of renewable energy. In this context, it is of great significance to systematically sort out and evaluate the renewable energy technology innovation policy for improving the existing policy system. Taking the 190 renewable energy technology innovation policies issued during 2005-2021 as a sample, from the perspectives of policy issuing departments and policy keywords, it uses text mining and content analysis methods to analyze the current situation of the policies and conduct a semantic network analysis to identify the core issuing departments and core policy topic words; A PMC (Policy Modeling Consistency) index model is built to quantitatively evaluate the selected policies, analyze the overall pros and cons of the policy through its PMC index, and reflect the PMC value of the model's secondary index The core departments publish policies and the performance of each dimension of the policies related to the core topic headings. The research results show that Renewable energy technology innovation policies focus on synergy between multiple departments, while the distribution of the issuers is uneven in terms of promulgation time; policies related to different topics have their own emphasis in terms of policy types, fields, functions, and support measures, but It still needs to be improved, such as the lack of policy forecasting and supervision functions, the lack of attention to product promotion, and the relatively single support measures. Finally, this research puts forward policy optimization suggestions in terms of promoting joint policy release, strengthening policy coherence and timeliness, enhancing the comprehensiveness of policy functions, and enriching incentive measures for renewable energy technology innovation.Keywords: renewable energy technology innovation, content analysis, policy evaluation, PMC index model
Procedia PDF Downloads 64778 Conceptualization and Assessment of Key Competencies for Children in Preschools: A Case Study in Southwest China
Authors: Yumei Han, Naiqing Song, Xiaoping Yang, Yuping Han
Abstract:
This study explores the conceptualization of key competencies that children are expected to develop in three year preschools (age 3-6) and the assessment practices of such key competencies in China. Assessment of children development has been put into the central place of early childhood education quality evaluation system in China. In the context of students key competencies development centered education reform in China, defining and selecting key competencies of children in preschools are of great significance in that they would lay a solid foundation for children’s lifelong learning path, and they would lead to curriculum and instruction reform, teacher development reform as well as quality evaluation reform in the early childhood education area. Based on sense making theory and framework, this study adopted multiple stakeholders’ (early childhood educators, parents, evaluation administrators, scholars in the early childhood education field) perspectives and grass root voices to conceptualize and operationalize key competencies for children in preschools in Southwest China. On the ground of children development theories, Chinese and international literature related to children development and key competencies, and key competencies frameworks by UNESCO, OECD and other nations, the authors designed a two-phase sequential mixed method study to address three main questions: (a) How is early childhood key competency defined or labeled from literature and from different stakeholders’ views? (b) Based on the definitions explicated in the literature and the surveys on different stakeholders, what domains and components are regarded to constitute the key competency framework of children in three-year preschools in China? (c) How have early childhood key competencies been assessed and measured, and how such assessment and measurement contribute to enhancing early childhood development quality? On the first phase, a series of focus group surveys were conducted among different types of stakeholders around the research questions. Moreover, on the second phase, based on the coding of the participants’ answers, together with literature synthesis findings, a questionnaire survey was designed and conducted to select most commonly expected components of preschool children’s key competencies. Semi-structured open questions were also included in the questionnaire for the participants to add on competencies beyond the checklist. Rudimentary findings show agreeable concerns on the significance and necessity of conceptualization and assessment of key competencies for children in preschools, and a key competencies framework composed of 7 domains and 25 indicators was constructed. Meanwhile, the findings also show issues in the current assessment practices of children’s competencies, such as lack of effective assessment tools, lack of teacher capacity in applying the tools to evaluating children and advancing children development accordingly. Finally, the authors put forth suggestions and implications for China and international communities in terms of restructuring early childhood key competencies framework, and promoting child development centered reform in early childhood education quality evaluation and development.Keywords: assessment, conceptualization, early childhood education quality in China, key competencies
Procedia PDF Downloads 248777 Feasibility of Implementing Zero Energy Buildings in Iran and Examining Its Economic and Technical Aspects
Authors: Maryam Siyami
Abstract:
Zero energy buildings refer to buildings that have zero annual energy consumption and do not produce carbon emissions. In today's world, considering the limited resources of fossil fuels, buildings, industries and other organizations have moved towards using other available energies. The idea and principle of net zero energy consumption has attracted a lot of attention because the use of renewable energy is a means and a solution to eliminate pollutants and greenhouse gases. Due to the increase in the cost of fossil fuels and their destructive effects on the environment and disrupting the ecological balance, today the plans related to zero energy principles have become very practical and have gained particular popularity. In this research, building modeling has been done in the Design Builder software environment. Based on the changes in the required energy throughout the year in different roof thickness conditions, it has been observed that with the increase in roof thickness, the amount of heating energy required has a downward trend, from 6730 kilowatt hours in the roof thickness of 10 cm to 6408 kilowatt hours in the roof thickness condition. 20 cm is reached, which represents a reduction of about 4.7% in energy if the roof thickness is doubled. Also, with the increase in the thickness of the roof throughout the year, the amount of cooling energy required has a gentle downward trend and has reached from 4964 kilowatt hours in the case of a roof thickness of 10 cm to 4859 kilowatt hours in the case of a roof thickness of 20 cm, which is a decrease equal to It displays 2%. It can be seen that the trend of changes in the energy required for cooling and heating is not much affected by the thickness of the roof (with an effect of 98%) and therefore there is no technical and economic recommendation to increase the thickness of the roof in this sector. Finally, based on the changes in the carbon dioxide produced in different states of the roof thickness, it has been observed that with the increase in the roof thickness, energy consumption and consequently the production of carbon dioxide has decreased. By increasing the thickness of the roof from 10 cm to 20 cm, the amount of carbon dioxide produced by heating the building has decreased by 27%. Also, this amount of reduction has been obtained based on the cooling system and for different amounts of roof thickness equal to 19%.Keywords: energy consumption, green building, design builder, AHP
Procedia PDF Downloads 22776 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation
Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um
Abstract:
In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube
Procedia PDF Downloads 198775 Correlates of Work-Family Role Conflict and Well-Being: A Comparative Analysis by Gender
Authors: Liat Kulik
Abstract:
The main goal of the present study was to examine gender differences in the variables that explain the experience of role conflict and well-being among Jewish working fathers and mothers in the Israel. The experience of work-family conflict arises from simultaneous pressures from the work and family domains that are mutually incompatible. In light of the expansion of women's role set following the addition of paid employment outside of the home, most of the studies dealing with the impact of multiple roles on well-being have been conducted among women. However, changes in gender roles in recent years have also affected men's role set, as reflected in the terms ‘new men’ and ‘new fathers’. Based on structural equation modeling, the study examined gender differences in variables that explain the experience of two types of role conflict – family interferes with work (FIW) and work interferes with family (WIF), as well as with the sense of well-being (positive and negative affect) among 611 employed Jewish mothers and fathers in Israel. The findings revealed that for women, both FIW and WIF conflict correlated negatively with well-being, whereas for men, a negative correlation with well-being was found only in the case of FIW conflict. For both men and women, egalitarian gender role ideology correlated with the dimension of positive effect, but the correlation was stronger for men. The findings highlight the contribution of egalitarian gender role ideology to alleviating the experience of role conflict and improving the emotional well-being of both men and women. Contrary to expectations, social support contributed more to mitigating negative effect among men than women. On the whole, the findings highlight the changes that men have experienced in the work-family system. In sum, the research findings shed new light on the masculine image in terms of the experience of FIW conflict. In contrast to the prevailing assumption that FIW role conflict is predominant among women, the findings of this study indicate that today, this type of role conflict is experienced equally by men and women whereas WIF conflict is predominant among men. Furthermore, contrary to expectations, levels of perceived social support were found to be similar for men and women, and men benefited from it even more than women did.Keywords: FIW conflict, WIF conflict, social support, egalitarian gender role ideology, overload
Procedia PDF Downloads 288774 Blockchain-Based Decentralized Architecture for Secure Medical Records Management
Authors: Saeed M. Alshahrani
Abstract:
This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms
Procedia PDF Downloads 54773 Exchanging Radiology Reporting System with Electronic Health Record: Designing a Conceptual Model
Authors: Azadeh Bashiri
Abstract:
Introduction: In order to better designing of electronic health record system in Iran, integration of health information systems based on a common language must be done to interpret and exchange this information with this system is required. Background: This study, provides a conceptual model of radiology reporting system using unified modeling language. The proposed model can solve the problem of integration this information system with electronic health record system. By using this model and design its service based, easily connect to electronic health record in Iran and facilitate transfer radiology report data. Methods: This is a cross-sectional study that was conducted in 2013. The student community was 22 experts that working at the Imaging Center in Imam Khomeini Hospital in Tehran and the sample was accorded with the community. Research tool was a questionnaire that prepared by the researcher to determine the information requirements. Content validity and test-retest method was used to measure validity and reliability of questioner respectively. Data analyzed with average index, using SPSS. Also, Visual Paradigm software was used to design a conceptual model. Result: Based on the requirements assessment of experts and related texts, administrative, demographic and clinical data and radiological examination results and if the anesthesia procedure performed, anesthesia data suggested as minimum data set for radiology report and based it class diagram designed. Also by identifying radiology reporting system process, use case was drawn. Conclusion: According to the application of radiology reports in electronic health record system for diagnosing and managing of clinical problem of the patient, provide the conceptual Model for radiology reporting system; in order to systematically design it, the problem of data sharing between these systems and electronic health records system would eliminate.Keywords: structured radiology report, information needs, minimum data set, electronic health record system in Iran
Procedia PDF Downloads 252772 Assessment of Socio-Cultural Sustainability: A Comparative Analysis of Two Neighborhoods in Kolkata Metropolitan Area
Authors: Tanima Bhattacharya, Joy Sen
Abstract:
To transform a space into a better livable and sustainable zone, United Nations Summit in New York 2015, has decided upon 17 sustainable development goals (SDGs) that approach directly to achieve inclusive, people-centric, sustainable developments. Though sustainability has been majorly constructed by four pillars, namely, Ecological, Economic, Social and Cultural, but it is essentially reduced to economic and ecological consideration in the context of developing countries. Therefore, in most cases planning has reduced its ambit to concentrate around the tangible infrastructure, ignoring the fundamentals of socio-cultural heritage. With the accentuating hype of infrastructural augmentation, lack of emphasis of traditional concerns like ethnicity and social connection have further diluted the situation, disintegrating cultural continuity. As cultural continuity lacks its cohesion, it’s growing absence increasingly acts as a catalyst to degrade the heritage structures, spaces around and linking these structures, and the ability of stakeholders in identifying themselves rooted in that particular space. Hence, this paper will argue that sustainability depends on the people and their interaction with their surroundings, their culture and livelihood. The interaction between people and their surroundings strengthen community building and social interaction that abides by stakeholders reverting back to their roots. To assess the socio-cultural sustainability of the city of Kolkata, two study areas are selected, namely, an old settlement from the northern part of the city of Kolkata (KMA), imbued with social connection, age-old cultural and ethnic bonding and, another cluster of new high-rises coming up in the Newtown area having portions of planned city extension on the eastern side of the city itself. Whereas, Newtown prioritizes the surging post-industrial trends of economic aspiration and ecological aspects of urban sustainability; the former settlements of northern Kolkata still continue to represent the earliest community settlement of the British-colonial-cum native era and even the pre-colonial era, permeated with socio-cultural reciprocation. Thus, to compare and assess the inlayed organizational structure of both the spaces in the two cases, selected areas have been surveyed to portray their current imageability. The argument of this paper is structured in 5parts. First, an introduction of the idea has been forwarded, Secondly, a literature review has been conducted to ground the proposed ideas, Thirdly, methodology has been discussed and appropriate case study areas have been selected, Fourthly, surveys and analyses has been forwarded and lastly, the paper has arrived at a set of conclusions by suggesting a threefold development to create happy, healthy and sustainable community.Keywords: art innovation, current scenario assessment, heritage, imageability, socio-cultural sustainability
Procedia PDF Downloads 140771 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches
Authors: Igor B. Sivaev
Abstract:
Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations
Procedia PDF Downloads 169770 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature
Procedia PDF Downloads 78769 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm
Authors: El Harraj Abdeslam, Raissouni Naoufal
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes
Procedia PDF Downloads 255768 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance
Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor
Abstract:
As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance
Procedia PDF Downloads 405767 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows
Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld
Abstract:
Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV
Procedia PDF Downloads 85766 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods
Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux
Abstract:
Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing
Procedia PDF Downloads 188765 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors
Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller
Abstract:
In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault
Procedia PDF Downloads 49764 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India
Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari
Abstract:
The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya
Procedia PDF Downloads 71763 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore
Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong
Abstract:
Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.Keywords: hydrology, modeling, water quality, wetland
Procedia PDF Downloads 139