Search results for: computer- supported collaborative learning
5253 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model
Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira
Abstract:
This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.Keywords: neurology, intracranial pressure, medical education, simulation
Procedia PDF Downloads 1745252 Pipat Ensemble and Music for Ligkey in Amphur Muaeng, Chachoengsao Province
Authors: Prasan Briboonnanggoul
Abstract:
The major objective of this research study was to explore some aspects of the performance culture of musical folk drama called Ligkey. This study was undertaken in an effect to focus on the specific functions of orchestra which accompanied Ligkey on Thai musical instruments in Chachoengsao Province. The process of study and exploration consisted of questionnaire, interview, a tape recording of an interview and photographs of performances which all of them were analyzed for the finding. The information obtained from the study indicated that Ligkey still received stable attention from people despite lesser performances affected by economics crisis. Almost all of the performances were organized and supported by both the public sector and the private sector. Based on the summary and finding of this study, a) there were ten Ligkey ensemble and ten orchestra which were Mon orchestra, not the precedent and the predecessor known as Thai orchestra; b) a variety of functions performed by musicians must harmonize discipline, punctuality, patience, no negligence, proficiency in performance; c) folklore melodies known as Plengnapad were performed as usual, but folklore melodies and songs known as Plangsongchan got lesser and got a tendency towards extinction because of the plot which corresponded with a market-driven entertainment. Therefore, a purpose-built schema of the preservation of Thai folklore songs was that they should have been recognized by both the performers and the audiences and patronized by the public sector via the government media to publicize the value of popular art form.Keywords: Pipat Ensemble, Ligkey, Amphur Muaeng, Chachoengsao Province
Procedia PDF Downloads 3305251 Translating Creativity to an Educational Context: A Method to Augment the Professional Training of Newly Qualified Secondary School Teachers
Authors: Julianne Mullen-Williams
Abstract:
This paper will provide an overview of a three year mixed methods research project that explores if methods from the supervision of dramatherapy can augment the occupational psychology of newly qualified secondary school teachers. It will consider how creativity and the use of metaphor, as applied in the supervision of dramatherapists, can be translated to an educational context in order to explore the explicit / implicit dynamics between the teacher trainee/ newly qualified teacher and the organisation in order to support the super objective in training for teaching; how to ‘be a teacher.’ There is growing evidence that attrition rates among teachers are rising after only five years of service owing to too many national initiatives, an unmanageable curriculum and deteriorating student discipline. The fieldwork conducted entailed facilitating a reflective space for Newly Qualified Teachers from all subject areas, using methods from the supervision of dramatherapy, to explore the social and emotional aspects of teaching and learning with the ultimate aim of improving the occupational psychology of teachers. Clinical supervision is a formal process of professional support and learning which permits individual practitioners in frontline service jobs; counsellors, psychologists, dramatherapists, social workers and nurses to expand their knowledge and proficiency, take responsibility for their own practice, and improve client protection and safety of care in complex clinical situations. It is deemed integral to continued professional practice to safeguard vulnerable people and to reduce practitioner burnout. Dramatherapy supervision incorporates all of the above but utilises creative methods as a tool to gain insight and a deeper understanding of the situation. Creativity and the use of metaphor enable the supervisee to gain an aerial view of the situation they are exploring. The word metaphor in Greek means to ‘carry across’ indicating a transfer of meaning form one frame of reference to another. The supervision support was incorporated into each group’s induction training programme. The first year group attended fortnightly one hour sessions, the second group received two one hour sessions every term. The existing literature on the supervision and mentoring of secondary school teacher trainees calls for changes in pre-service teacher education and in the induction period. There is a particular emphasis on the need to include reflective and experiential learning, within training programmes and within the induction period, in order to help teachers manage the interpersonal dynamics and emotional impact within a high pressurised environmentKeywords: dramatherapy supervision, newly qualified secondary school teachers, professional development, teacher education
Procedia PDF Downloads 3925250 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 1945249 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 775248 Examining the Drivers of Sustainable Consumer Behavioural Intention in the Irish Aviation Industry
Authors: Amy Whelan
Abstract:
This paper presents the reader with the overarching research topic: Examining the drivers to sustainable consumer behavioural intention in the Irish aviation industry. This research will examine the underlying factors that facilitate or hinder a consumer’s sustainable consumption pertaining to aviation, in order to advance the Sustainable Development Goals (SDG’s). The SDG’s were adopted by all United Nations Member States in 2015 as a call to end poverty, to protect the planet and to ensure that all people enjoy peace and prosperity by the year 2030. Consumers are becoming increasingly concerned about environmental, social and economic issues, and are willing to act on those concerns. More recently, the impact of a consumers environmental footprint has led consumers to re-evaluate their purchase habits and in some cases consumers are more willing to spend more on products and services with environmental characteristics. Accordingly, this has pushed businesses to re-examine their sustainable efforts. However, although consumers may feel a moral responsibility to live sustainably, they cannot do so without effective support from governments, NGOs and the businesses with which they interact. Through the use of Ajzen’s amended TPB model, this research seeks to understand consumers attitudes and behavioural intention towards sustainable aviation and travel and examine the attitude-behaviour gap in sustainable tourism and aviation in Ireland. This research is a mixed methods study and will include an initial elicitation study in the form of focus groups supported by a quantitative survey to inform the initial findings of this research.Keywords: aviation, consumer behaviour, marketing, sustainability
Procedia PDF Downloads 905247 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3205246 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK
Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina
Abstract:
Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.Keywords: attitude, expectations, industry needs, knowledge, skills
Procedia PDF Downloads 1275245 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks
Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short
Abstract:
With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB
Procedia PDF Downloads 465244 The Role of Group Dynamics in Creativity: A Study Case from Italy
Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo
Abstract:
Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.Keywords: group dynamics, creative thinking, creative action, social interactions, group play
Procedia PDF Downloads 1305243 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study
Authors: Kaaryn Cater
Abstract:
People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity
Procedia PDF Downloads 695242 An Examination of the Relationship between Organizational Justice and Trust in the Supervisor: The Mediating Role of Perceived Supervisor Support
Authors: Michel Zaitouni, Mohamed Nassar
Abstract:
The purpose of this study is first, to explore the effect of employees’ perception of justice on trust in the supervisor in the context of performance appraisal; Second, to assess the role of perceived supervisor support as a mediator between organizational justice and trust in the supervisor in a non-western society such as Kuwait.The survey data consisted of 415 employees working at different hierarchical levels in three major banks in Kuwait. Hierarchical regression analysis was used to test the research hypotheses. Results supported hypothesized relationships between distributive, informational and interpersonal justice and trust in the supervisor but failed to support that procedural justice positively and significantly relate to trust in the supervisor. Moreover, results found that this relationship is partially mediated by perceived supervisor support. A potential limitation of this study is that data were obtained from the same industry which limits the generalizability of this study to other industries. Moreover, a longitudinal research will be helpful to strengthen the mediating relationship. The findings provide valuable information for the development of common perspectives regarding the perception of justice in the context of performance appraisal between the western and non-western societies. The paper has the privilege to explore additional relationships related to justice perceptions in the Kuwaiti banking sector, whereas previous research focused mainly on procedural and distributive justice as predictors of trust in the supervisor.Keywords: Kuwait, organizational justice, perceived supervisor support, trust in the supervisor
Procedia PDF Downloads 3135241 Modernization of Translation Studies Curriculum at Higher Education Level in Armenia
Authors: A. Vahanyan
Abstract:
The paper touches upon the problem of revision and modernization of the current curriculum on translation studies at the Armenian Higher Education Institutions (HEIs). In the contemporary world where quality and speed of services provided are mostly valued, certain higher education centers in Armenia though do not demonstrate enough flexibility in terms of the revision and amendment of courses taught. This issue is present for various curricula at the university level and Translation Studies related curriculum, in particular. Technological innovations that are of great help for translators have been long ago smoothly implemented into the global Translation Industry. According to the European Master's in Translation (EMT) framework, translation service provision comprises linguistic, intercultural, information mining, thematic, and technological competencies. Therefore, to form the competencies mentioned above, the curriculum should be seriously restructured to meet the modern education and job market requirements, relevant courses should be proposed. New courses, in particular, should focus on the formation of technological competences. These suggestions have been made upon the author’s research of the problem across various HEIs in Armenia. The updated curricula should include courses aimed at familiarization with various computer-assisted translation (CAT) tools (MemoQ, Trados, OmegaT, Wordfast, etc.) in the translation process, creation of glossaries and termbases compatible with different platforms), which will ensure consistency in translation of similar texts and speeding up the translation process itself. Another aspect that may be strengthened via curriculum modification is the introduction of interdisciplinary and Project-Based Learning courses, which will enable info mining and thematic competences, which are of great importance as well. Of course, the amendment of the existing curriculum with the mentioned courses will require corresponding faculty development via training, workshops, and seminars. Finally, the provision of extensive internship with translation agencies is strongly recommended as it will ensure the synthesis of theoretical background and practical skills highly required for the specific area. Summing up, restructuring and modernization of the existing curricula on Translation Studies should focus on three major aspects, i.e., introduction of new courses that meet the global quality standards of education, professional development for faculty, and integration of extensive internship supervised by experts in the field.Keywords: competencies, curriculum, modernization, technical literacy, translation studies
Procedia PDF Downloads 1325240 Optimal Sliding Mode Controller for Knee Flexion during Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.Keywords: optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons
Procedia PDF Downloads 875239 Bringing Feminist Critical Pedagogy to the ESP Higher Education Classes: Feasibility and Challenges
Authors: Samira Essabari
Abstract:
What, unfortunately, governs the Moroccan educational philosophy and policy today is a concerning neoliberal discourse with its obsession with market logics and individualism. Critical education has been advocated to resist the neoliberal hegemony since it holds the promise to reclaim the social function of education. Significantly, the mounting forms of sexism and discrimination against women combined with hegemonic educational practices are jeopardizing the social function of teaching and learning, hence the relevance of feminist critical pedagogy. A substantial body of research worldwide has explored the ways in which feminist pedagogy can develop feminist consciousness and examine power relations in different educational contexts. In Morocco, however, the feasibility of feminist pedagogy has not been researched despite the overwhelming interest in gender issues in different educational settings. The research on critical pedagogies in Morocco remains very promising. Yet, most studies were conducted in contexts which are already engaged with issues of theory, discourse, and discourse analysis. The field of ESP ( English for Specific Purposes) is pragmatic by nature, and priority in research has been given to questions that adhere to the mainstream concerns of need analysis and study skills and ignore issues of power, gender power relations, and intersectional forms of oppression. To address these gaps in the existing literature, this participatory action research seeks to investigate the feasibility of Feminist pedagogy in ESP higher education and how it can foster feminist critical consciousness among ESP students without compromising their language learning needs. The findings of this research will contribute to research on critical applied linguistics and critical ESP more specifically and add to the practice of critical pedagogies in Moroccan higher education by providing in-depth insights into the enablers and barriers to the implementation of feminist critical pedagogy, which is still feeling its way into the educational scene in Morocco.Keywords: feminist pedagogy, critical pedagogy, power relations, gender, ESP, intersectionality
Procedia PDF Downloads 1325238 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1455237 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 1985236 Overcoming Reading Barriers in an Inclusive Mathematics Classroom with Linguistic and Visual Support
Authors: A. Noll, J. Roth, M. Scholz
Abstract:
The importance of written language in a democratic society is non-controversial. Students with physical, learning, cognitive or developmental disabilities often have difficulties in understanding information which is presented in written language only. These students suffer from obstacles in diverse domains. In order to reduce such barriers in educational as well as in out-of-school areas, access to written information must be facilitated. Readability can be enhanced by linguistic simplifications like the application of easy-to-read language. Easy-to-read language shall help people with disabilities to participate socially and politically in society. The authors state, for example, that only short simple words should be used, whereas the occurrence of complex sentences should be avoided. So far, these guidelines were not empirically proved. Another way to reduce reading barriers is the use of visual support, for example, symbols. A symbol conveys, in contrast to a photo, a single idea or concept. Little empirical data about the use of symbols to foster the readability of texts exist. Nevertheless, a positive influence can be assumed, e.g., because of the multimedia principle. It indicates that people learn better from words and pictures than from words alone. A qualitative Interview and Eye-Tracking-Study, which was conducted by the authors, gives cause for the assumption that besides the illustration of single words, the visualization of complete sentences may be helpful. Thus, the effect of photos, which illustrate the content of complete sentences, is also investigated in this study. This leads us to the main research question which was focused on: Does the use of easy-to-read language and/or enriching text with symbols or photos facilitate pupils’ comprehension of learning tasks? The sample consisted of students with learning difficulties (N = 144) and students without SEN (N = 159). The students worked on the tasks, which dealt with introducing fractions, individually. While experimental group 1 received a linguistically simplified version of the tasks, experimental group 2 worked with a variation which was linguistically simplified and furthermore, the keywords of the tasks were visualized by symbols. Experimental group 3 worked on exercises which were simplified by easy-to-read-language and the content of the whole sentences was illustrated by photos. Experimental group 4 received a not simplified version. The participants’ reading ability and their IQ was elevated beforehand to build four comparable groups. There is a significant effect of the different setting on the students’ results F(3,140) = 2,932; p = 0,036*. A post-hoc-analyses with multiple comparisons shows that this significance results from the difference between experimental group 3 and 4. The students in the group easy-to-read language plus photos worked on the exercises significantly more successfully than the students who worked in the group with no simplifications. Further results which refer, among others, to the influence of the students reading ability will be presented at the ICERI 2018.Keywords: inclusive education, mathematics education, easy-to-read language, photos, symbols, special educational needs
Procedia PDF Downloads 1585235 Irish Film Tourism, Neocolonialism and Star Wars: Charting a Course Towards Ecologically and Culturally Considered Representation and Tourism on Skellig Michael
Authors: Rachel Gough
Abstract:
In 2014, Skellig Michael, an island off Ireland’s western seaboard and UNESCO world heritage site became a major setting in Disney’s Star Wars franchise. The subsequent influx of tourists to the site has proven to be a point of contention nationally. The increased visitor numbers have uplifted certain areas of the local economy, the mainland, but have caused irreparable damage to historic monuments and to endangered bird populations who breed on the island. Recent research carried out by a state body suggests far-reaching and longterm negative impacts on the island’s culture and environment, should the association with the Star Wars franchise persist. In spite of this, the film has been widely endorsed by the Irish government as providing a vital economic boost to historically marginalised rural areas through film tourism. This paper argues quite plainly that what is taking place on Skellig is neocolonialism. Skellig Michael’s unique resources, its aesthetic qualities, its ecosystem, and its cultural currency have been sold by the state to a multinational corporation, who profit from their use. Meanwhile, locals are left to do their best to turn a market trend into sustainable business at the expense of culture ecology and community. This paper intends to be the first dedicated study into the psychogeographic and cultural impact of Skellig Michael’s deterioration as a result of film tourism. It will discuss the projected impact of this incident on Irish culture more broadly and finally will attempt to lay out a roadmap for more collaborative filmmaking and touristic approach, which allows local cultures and ecosystem’s to thrive without drastically inhibiting cultural production. This paper will ultimately find that the consequences of this representation call for a requirement to read tourism as a split concept — namely into what we might loosely call “eco-tourism” and more capital-based “profit-bottom-line tourism.”Keywords: ecology, film tourism, neocolonialism, sustainability
Procedia PDF Downloads 2105234 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop
Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen
Abstract:
Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.
Procedia PDF Downloads 485233 Generative Pre-Trained Transformers (GPT-3) and Their Impact on Higher Education
Authors: Sheelagh Heugh, Michael Upton, Kriya Kalidas, Stephen Breen
Abstract:
This article aims to create awareness of the opportunities and issues the artificial intelligence (AI) tool GPT-3 (Generative Pre-trained Transformer-3) brings to higher education. Technological disruptors have featured in higher education (HE) since Konrad Klaus developed the first functional programmable automatic digital computer. The flurry of technological advances, such as personal computers, smartphones, the world wide web, search engines, and artificial intelligence (AI), have regularly caused disruption and discourse across the educational landscape around harnessing the change for the good. Accepting AI influences are inevitable; we took mixed methods through participatory action research and evaluation approach. Joining HE communities, reviewing the literature, and conducting our own research around Chat GPT-3, we reviewed our institutional approach to changing our current practices and developing policy linked to assessments and the use of Chat GPT-3. We review the impact of GPT-3, a high-powered natural language processing (NLP) system first seen in 2020 on HE. Historically HE has flexed and adapted with each technological advancement, and the latest debates for educationalists are focusing on the issues around this version of AI which creates natural human language text from prompts and other forms that can generate code and images. This paper explores how Chat GPT-3 affects the current educational landscape: we debate current views around plagiarism, research misconduct, and the credibility of assessment and determine the tool's value in developing skills for the workplace and enhancing critical analysis skills. These questions led us to review our institutional policy and explore the effects on our current assessments and the development of new assessments. Conclusions: After exploring the pros and cons of Chat GTP-3, it is evident that this form of AI cannot be un-invented. Technology needs to be harnessed for positive outcomes in higher education. We have observed that materials developed through AI and potential effects on our development of future assessments and teaching methods. Materials developed through Chat GPT-3 can still aid student learning but lead to redeveloping our institutional policy around plagiarism and academic integrity.Keywords: artificial intelligence, Chat GPT-3, intellectual property, plagiarism, research misconduct
Procedia PDF Downloads 935232 Enhancing Green Infrastructure as a Climate Change Adaptation Strategy in Addis Ababa: Unlocking Institutional, Socio-Cultural and Cognitive Barriers for Application
Authors: Eyasu Markos Woldesemayat, Paolo Vincenzo Genovese
Abstract:
In recent years with an increase in the concentration of Green House Gases (GHG), Climate Change (CC) externalities are mounting, regardless of governments, are scrambling to implement mitigation and adaptation measures. With multiple social, economic and environmental benefits, Green Infrastructure (GI) has evolved as a highly valuable policy tool to promote sustainable development and smart growth by meeting multiple objectives towards quality of life. However, despite the wide range of benefits, it's uptake in African cities such as Addis Ababa is very low due to several constraining factors. This study, through content analysis and key informant interviews, examined barriers for the uptake of GI among spatial planners in Addis Ababa. Added to this, the study has revealed that the spatial planners had insufficient knowledge about GI planning principles such as multi-functionality, integration, and connectivity, and multiscale. The practice of implementing these holistic principles in urban spatial planning is phenomenally nonexistent. The findings also revealed 20 barriers categorized under four themes, i.e., institutional, socio-cultural, resource, and cognitive barriers. Similarly, it was identified that institutional barriers (0.756), socio-cultural barriers (0.730), cognitive barriers (0.700) and resource barriers (0.642), respectively, are the foremost impending factors for the promotion of GI in Addis Ababa. It was realized that resource barriers were the least constraining factor for enshrining the GI uptake in the city. Strategies to hasten the adoption of GI in the city mainly focus on improving political will, harmonization sectorial plans, improve spatial planning and implementation practice, prioritization of GI in all planning activities, enforcement of environmental laws, introducing collaborative GI governance, creating strong and stable institutions and raising awareness on the need to conserve environment and CC externalities through education and outreach mechanisms.Keywords: Addis Ababa, climate change, green infrastructure, spatial planning, spatial planners
Procedia PDF Downloads 1245231 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5195230 The History of the Residential Care Environments for the Elderly in Iran
Authors: Saeed Haghnia
Abstract:
This paper traces the back history of environments in which the elderly who could not stay in private dwellings were accommodated and taken care of in Iran in the 19th century. It investigates the factors impacting on the establishment of the first nursing homes in Iran in 1973. Today in 2020, the nursing home is the only available model of residential care environment for the elderly who cannot stay in private dwellings in Iran. Understanding the evolution of these environments from a socio-political perspective is crucial before studying nursing homes’ response to the elderly and society in Iran and seeking any alternative model specific to the context. However, no study on the evolution of these environments in Iran was found. Thus, this paper, by going through primary and secondary resources and from a socio-political perspective, investigates how the elderly who could not stay in private dwellings were accommodated and taken care of in Iran in the 19th century. Maristan, in the early 19th century in Egypt as a part of Islamic territory, is an example of such spaces in which homeless elderly were kept and taken care of. This study suggests that in the 19th century in Iran in lack of significant governmental influence over people’s social affairs, any potential environments accommodating and taking care of the elderly who could not stay in private dwellings (mainly homeless) in Iran were probably regulated or supported by local figures, specifically clergies, as a response to the need for taking care of the vulnerable members of society.Keywords: nursing home, ageing, Iran, middle east, Qajar, Pahlavi
Procedia PDF Downloads 985229 Perceptions and Experiences of Students and Their Instructors on Online versus Face-To-Face Classrooms
Authors: Rahime Filiz Kiremit
Abstract:
This study involves investigating the comparisons of both online and face-to-face classes, along with providing their respective differences. The research project contains information pertaining to the two courses, provided with testimony from students and instructors alike. There were a total of 37 participants involved within the study from San Jacinto College; 35 students and the two instructors of their respective courses. The online instructor has a total of four years of teaching experience, while the face-to-face instructor has accrued 11 years of instructional education. The both instructors were interviewed and the samples were collected from three different classes - TECA 1311-702 (Educating Young Children 13 week distance learning), TECA 1311-705 (Educating Young Children 13 week distance learning) and TECA 1354 (Child Growth and Development). Among all three classes, 13 of the 29 students enrolled in either of the online courses considered participation within the survey, while 22 of the 28 students enrolled in the face-to-face course elected to do the same thing. With regards to the students’ prior class enrollment, 25 students had taken online classes previously, 9 students had taken early-childhood courses, 4 students had taken general classes, 11 students had taken both types of classes, 10 students had not yet taken online classes, and only 1 of them had taken a hybrid course. 10 of the participants professed that they like face-to-face classes, because they find that they can interact with their classmates and teachers. They find that online classes have more work to do, because they need to read the chapters and instructions on their own time. They said that during the face-to-face instruction, they could take notes and converse concerns with professors and fellow peers. They can have hands-on activities during face-to-face classes, and, as a result, improve their abilities to retain what they have learned within that particular time. Some of the students even mentioned that they are supposed to discipline themselves, because the online classes require more work. According to the remaining six students, online classes are easier than face-to-face classes. Most of them believe that the easiness of a course is dependent on the types of classes, the instructors, and the respective subjects of which they teach. With considerations of all 35 students, almost 63% of the students agreed that they interact more with their classmates in face-to-face classes.Keywords: distance education, face-to-face education, online classroom, students' perceptions
Procedia PDF Downloads 2825228 Documenting the 15th Century Prints with RTI
Authors: Peter Fornaro, Lothar Schmitt
Abstract:
The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.Keywords: art history, computational photography, paste prints, reflectance transformation imaging
Procedia PDF Downloads 2775227 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone
Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park
Abstract:
In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone
Procedia PDF Downloads 2725226 Textile-Based Sensing System for Sleep Apnea Detection
Authors: Mary S. Ruppert-Stroescu, Minh Pham, Bruce Benjamin
Abstract:
Sleep apnea is a condition where a person stops breathing and can lead to cardiovascular disease, hypertension, and stroke. In the United States, approximately forty percent of overnight sleep apnea detection tests are cancelled. The purpose of this study was to develop a textile-based sensing system that acquires biometric signals relevant to cardiovascular health, to transmit them wirelessly to a computer, and to quantitatively assess the signals for sleep apnea detection. Patient interviews, literature review and market analysis defined a need for a device that ubiquitously integrated into the patient’s lifestyle. A multi-disciplinary research team of biomedical scientists, apparel designers, and computer engineers collaborated to design a textile-based sensing system that gathers EKG, Sp02, and respiration, then wirelessly transmits the signals to a computer in real time. The electronic components were assembled from existing hardware, the Health Kit which came pre-set with EKG and Sp02 sensors. The respiration belt was purchased separately and its electronics were built and integrated into the Health Kit mother board. Analog ECG signals were amplified and transmitted to the Arduino™ board where the signal was converted from analog into digital. By using textile electrodes, ECG lead-II was collected, and it reflected the electrical activity of the heart. Signals were collected when the subject was in sitting position and at sampling rate of 250 Hz. Because sleep apnea most often occurs in people with obese body types, prototypes were developed for a man’s size medium, XL, and XXL. To test user acceptance and comfort, wear tests were performed on 12 subjects. Results of the wear tests indicate that the knit fabric and t-shirt-like design were acceptable from both lifestyle and comfort perspectives. The airflow signal and respiration signal sensors return good signals regardless of movement intensity. Future study includes reconfiguring the hardware to a smaller size, developing the same type of garment for the female body, and further enhancing the signal quality.Keywords: sleep apnea, sensors, electronic textiles, wearables
Procedia PDF Downloads 2775225 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment
Authors: Atma Sahu
Abstract:
After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems
Procedia PDF Downloads 995224 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis
Authors: Mangaka C. Matoetoe, Fredrick O. Okumu
Abstract:
Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.Keywords: kinetics, morphology, nanoparticles, platinum, silver
Procedia PDF Downloads 406