Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6151

Search results for: measurement accuracy

121 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 239
120 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 77
119 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 63
118 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 223
117 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 180
116 Force Sensing Resistor Testing of Hand Forces and Grasps during Daily Functional Activities in the Covid-19 Pandemic

Authors: Monique M. Keller, Roline Barnes, Corlia Brandt

Abstract:

Introduction Scientific evidence on the hand forces and the types of grasps measurement during daily tasks are lacking, leaving a gap in the field of hand rehabilitation and robotics. Measuring the grasp forces and types produced by the individual fingers during daily functional tasks is valuable to inform and grade rehabilitation practices for second to fifth metacarpal fractures with robust scientific evidence. Feix et al, 2016 identified the most extensive and complete grasp study that resulted in the GRASP taxonomy. Covid-19 virus changed data collection across the globe and safety precautions in research are essential to ensure the health of participants and researchers. Methodology A cross-sectional study investigated six healthy adults aged 20 to 59 years, pilot participants’ hand forces during 105 tasks. The tasks were categorized into five sections namely, personal care, transport and moving around, home environment and inside, gardening and outside, and office. The predominant grasp of each task was identified guided by the GRASP Taxonomy. Grasp forces were measured with 13mm force-sensing resistors glued onto a glove attached to each of the dominant and non-dominant hand’s individual fingers. Testing equipment included Flexiforce 13millimetres FSR .5" circle, calibrated prior to testing, 10k 1/4w resistors, Arduino pro mini 5.0v – compatible, Esp-01-kit, Arduino uno r3 – compatible board, USB ab cable - 1m, Ftdi ft232 mini USB to serial, Sil 40 inline connectors, ribbon cable combo male header pins, female to female, male to female, two gloves, glue to attach the FSR to glove, Arduino software programme downloaded on a laptop. Grip strength measurements with Jamar dynamometer prior to testing and after every 25 daily tasks were taken to will avoid fatigue and ensure reliability in testing. Covid-19 precautions included wearing face masks at all times, screening questionnaires, temperatures taken, wearing surgical gloves before putting on the testing gloves 1.5 metres long wires attaching the FSR to the Arduino to maintain social distance. Findings Predominant grasps observed during 105 tasks included, adducted thumb (17), lateral tripod (10), prismatic three fingers (12), small diameter (9), prismatic two fingers (9), medium wrap (7), fixed hook (5), sphere four fingers (4), palmar (4), parallel extension (4), index finger extension (3), distal (3), power sphere (2), tripod (2), quadpod (2), prismatic four fingers (2), lateral (2), large-diameter (2), ventral (2), precision sphere (1), palmar pinch (1), light tool (1), inferior pincher (1), and writing tripod (1). Range of forces applied per category, personal care (1-25N), transport and moving around (1-9 N), home environment and inside (1-41N), gardening and outside (1-26.5N), and office (1-20N). Conclusion Scientifically measurements of finger forces with careful consideration to types of grasps used in daily tasks should guide rehabilitation practices and robotic design to ensure a return to the full participation of the individual into the community.

Keywords: activities of daily living (ADL), Covid-19, force-sensing resistors, grasps, hand forces

Procedia PDF Downloads 193
115 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 84
114 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts

Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig

Abstract:

This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.

Keywords: expert interview, hazard management, modeling, simulation, snow avalanche

Procedia PDF Downloads 330
113 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 178
112 Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal

Authors: C. Bateira, J. Fernandes, A. Costa

Abstract:

The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06.

Keywords: agricultural terraces, cartography, landslides, SHALSTAB, vineyards

Procedia PDF Downloads 181
111 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads

Authors: Raja Umer Sajjad, Chang Hee Lee

Abstract:

Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.

Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters

Procedia PDF Downloads 245
110 Immunostimulatory Response of Supplement Feed in Fish against Aeromonas hydrophila

Authors: Shikha Rani, Neeta Sehgal, Vipin Kumar Verma, Om Prakash

Abstract:

Introduction: Fish is an important protein source for humans and has great economic value. Fish cultures are affected due to various anthropogenic activities that lead to bacterial and viral infections. Aeromonas hydrophila is a fish pathogenic bacterium that causes several aquaculture outbreaks throughout the world and leads to huge mortalities. In this study, plants of no commercial value were used to investigate their immunostimulatory, antioxidant, anti-inflammatory, anti-bacterial, and disease resistance potential in fish against Aeromonas hydrophila, through fish feed fortification. Methods: The plant was dried at room temperature in the shade, dissolved in methanol, and analysed for biological compounds through GC-MS/MS. DPPH, FRAP, Phenolic, and flavonoids were estimated following standardized protocols. In silico molecular docking was also performed to validate its broad-spectrum activities based on binding affinity with specific proteins. Fish were divided into four groups (n=6; total 30 in a group): Group 1, non-challenged fish (fed on a non-supplemented diet); Group 2, fish challenged with bacteria (fed on a non-supplemented diet); Group 3 and 4, fish challenged with bacteria (A. hydrophila) and fed on plant supplemented feed at 2.5% and 5%. Blood was collected from the fish on 0, 7th, 14th, 21st, and 28th days. Serum was separated for glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase assay (ALP), lysozyme activity assay, superoxide dismutase assay (SOD), lipid peroxidation assay (LPO) and molecular parameters (including cytokine levels) were estimated through ELISA. The phagocytic activity of macrophages from the spleen and head kidney, along with quantitative analysis of immune-related genes, were analysed in different tissue samples. The digestive enzymes (Pepsin, Trypsin, and Chymotrypsin) were also measured to evaluate the effect of plant-supplemented feed on freshwater fish. Results and Discussion: GC-MS/MS analysis of a methanolic extract of plant validated the presence of key compounds having antioxidant, anti-inflammatory, anti-bacterial, anti-inflammatory, and immunomodulatory activities along with disease resistance properties. From biochemical investigations like ABTS, DPPH, and FRAP, the amount of total flavonoids, phenols, and promising binding affinities towards different proteins in molecular docking analysis helped us to realize the potential of this plant that can be used for investigation in the supplemented feed of fish. Measurement liver function tests, ALPs, oxidation-antioxidant enzyme concentrations, and immunoglobulin concentrations in the experimental groups (3 and 4) showed significant improvement as compared to the positive control group. The histopathological evaluation of the liver, spleen, and head kidney supports the biochemical findings. The isolated macrophages from the group fed on supplemented feed showed a higher percentage of phagocytosis and a phagocytic index, indicating an enhanced cell-mediated immune response. Significant improvements in digestive enzymes were also observed in fish fed on supplemented feed, even after weekly challenges with bacteria. Hence, the plant-fortified feed can be recommended as a regular feed to enhance fish immunity and disease resistance against the Aeromonas hydrophila infection after confirmation from the field trial.

Keywords: immunostimulation, antipathogen, plant fortified feed, macrophages, GC-MS/MS, in silico molecular docking

Procedia PDF Downloads 88
109 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling

Procedia PDF Downloads 153
108 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 134
107 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years

Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat

Abstract:

Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.

Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding

Procedia PDF Downloads 177
106 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 86
105 The Effects of Aging on Visuomotor Behaviors in Reaching

Authors: Mengjiao Fan, Thomson W. L. Wong

Abstract:

It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.

Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration

Procedia PDF Downloads 312
104 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 145
103 Leveraging Advanced Technologies and Data to Eliminate Abandoned, Lost, or Otherwise Discarded Fishing Gear and Derelict Fishing Gear

Authors: Grant Bifolchi

Abstract:

As global environmental problems continue to have highly adverse effects, finding long-term, sustainable solutions to combat ecological distress are of growing paramount concern. Ghost Gear—also known as abandoned, lost or otherwise discarded fishing gear (ALDFG) and derelict fishing gear (DFG)—represents one of the greatest threats to the world’s oceans, posing a significant hazard to human health, livelihoods, and global food security. In fact, according to the UN Food and Agriculture Organization (FAO), abandoned, lost and discarded fishing gear represents approximately 10% of marine debris by volume. Around the world, many governments, governmental and non-profit organizations are doing their best to manage the reporting and retrieval of nets, lines, ropes, traps, floats and more from their respective bodies of water. However, these organizations’ ability to effectively manage files and documents about the environmental problem further complicates matters. In Ghost Gear monitoring and management, organizations face additional complexities. Whether it’s data ingest, industry regulations and standards, garnering actionable insights into the location, security, and management of data, or the application of enforcement due to disparate data—all of these factors are placing massive strains on organizations struggling to save the planet from the dangers of Ghost Gear. In this 90-minute educational session, globally recognized Ghost Gear technology expert Grant Bifolchi CET, BBA, Bcom, will provide real-world insight into how governments currently manage Ghost Gear and the technology that can accelerate success in combatting ALDFG and DFG. In this session, attendees will learn how to: • Identify specific technologies to solve the ingest and management of Ghost Gear data categories, including type, geo-location, size, ownership, regional assignment, collection and disposal. • Provide enhanced access to authorities, fisheries, independent fishing vessels, individuals, etc., while securely controlling confidential and privileged data to globally recognized standards. • Create and maintain processing accuracy to effectively track ALDFG/DFG reporting progress—including acknowledging receipt of the report and sharing it with all pertinent stakeholders to ensure approvals are secured. • Enable and utilize Business Intelligence (BI) and Analytics to store and analyze data to optimize organizational performance, maintain anytime-visibility of report status, user accountability, scheduling, management, and foster governmental transparency. • Maintain Compliance Reporting through highly defined, detailed and automated reports—enabling all stakeholders to share critical insights with internal colleagues, regulatory agencies, and national and international partners.

Keywords: ghost gear, ALDFG, DFG, abandoned, lost or otherwise discarded fishing gear, data, technology

Procedia PDF Downloads 99
102 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 322
101 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 281
100 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference

Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev

Abstract:

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.

Keywords: compartmental model, climate, dengue, machine learning, social-economic

Procedia PDF Downloads 90
99 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty

Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti

Abstract:

Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.

Keywords: ADAM10, biomarkers, cognitive frailty, elderly

Procedia PDF Downloads 240
98 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 159
97 Understanding Awareness, Agency and Autonomy of Mothers and Potential of Digital Technology in Expanding Maternal Health Information Access: A Survey of Mothers in Urban India

Authors: Sumiti Saharan, Pallav Patankar, Lily W. Lee

Abstract:

Understanding the health-seeking behaviors and attitudes of women towards maternal health in the context of gender roles and family dynamics is tremendously crucial for designing effective and impactful interventions aimed at improving maternal and child health outcomes. Further, as the digital world becomes more accessible and affordable, it is imperative to scope the potential of digital technology in enabling access to maternal health information in different socio-economic groups (SEGs). In the summer of 2017, we conducted a study with 500 women across different SEGs in urban India who were pregnant or had had a delivery in the last year. The study was undertaken to assess their maternal health information seeking behavior with a particular focus on probing their use of digital technology for health-related information. The study also measured women's decision-making autonomy in the context of maternal health, awareness of their rights to quality and respectful maternal healthcare, and agency to voice their rights. We probed the impact of key variables including education, age, and socioeconomic status on all outcome variables. In terms of health-seeking behaviors, we found that women heavily relied on medical professionals and/or their mothers and mothers-in-law for all maternal health advice. Digital adoption was found to be high across all SEGs, with around 70% of women from all populations using the internet several times a week. On the other hand, use of the internet for both accessing maternal health information and choosing maternity hospitals were both significantly dependent on SEG. The key reasons reported for not using the internet for health purposes were lack of awareness and lack of trust on content accuracy. Decisions around health practices and type of delivery were found to be jointly made by women and other family members. Almost all women reported their husbands to play a key role in all maternal health decisions and for decisions with a clear financial implication like choice of hospital for delivery, husbands were reported to be the sole decision maker by a majority of women. The agency of women was also found to be low in interactions with maternal healthcare providers with a third of respondents not comfortable with voicing their opinions and preferences to their doctors. Interestingly, we find that this relatively low agency was prominent in both lower middle class and middle-class SEGs. Recognition of the sociocultural determinants of behavior is the first step in developing actionable strategies for improving maternal health outcomes. Our study quantifies the agency and autonomy of women in urban India and the variables that impact them. Our findings emphasize the value of gender normative approaches that factor in the key role husbands play in guiding maternal health decisions. They also highlight the power of digital approaches for catalyzing access to maternal health information. These insights into the attitude and behaviors of mothers in context of their sociocultural environments—and their relationship with digital technology—can help pave the way towards designing effective, scalable maternal and child health programs in developing nations like India.

Keywords: access to healthcare information, behavior, digital health, maternal health

Procedia PDF Downloads 141
96 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 216
95 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 167
94 Non-Invasive Evaluation of Patients After Percutaneous Coronary Revascularization. The Role of Cardiac Imaging

Authors: Abdou Elhendy

Abstract:

Numerous study have shown the efficacy of the percutaneous intervention (PCI) and coronary stenting in improving left ventricular function and relieving exertional angina. Furthermore, PCI remains the main line of therapy in acute myocardial infarction. Improvement of procedural techniques and new devices have resulted in an increased number of PCI in those with difficult and extensive lesions, multivessel disease as well as total occlusion. Immediate and late outcome may be compromised by acute thrombosis or the development of fibro-intimal hyperplasia. In addition, progression of coronary artery disease proximal or distal to the stent as well as in non-stented arteries is not uncommon. As a result, complications can occur, such as acute myocardial infarction, worsened heart failure or recurrence of angina. In a stent, restenosis can occur without symptoms or with atypical complaints rendering the clinical diagnosis difficult. Routine invasive angiography is not appropriate as a follow up tool due to associated risk and cost and the limited functional assessment. Exercise and pharmacologic stress testing are increasingly used to evaluate the myocardial function, perfusion and adequacy of revascularization. Information obtained by these techniques provide important clues regarding presence and severity of compromise in myocardial blood flow. Stress echocardiography can be performed in conjunction with exercise or dobutamine infusion. The diagnostic accuracy has been moderate, but the results provide excellent prognostic stratification. Adding myocardial contrast agents can improve imaging quality and allows assessment of both function and perfusion. Stress radionuclide myocardial perfusion imaging is an alternative to evaluate these patients. The extent and severity of wall motion and perfusion abnormalities observed during exercise or pharmacologic stress are predictors of survival and risk of cardiac events. According to current guidelines, stress echocardiography and radionuclide imaging are considered to have appropriate indication among patients after PCI who have cardiac symptoms and those who underwent incomplete revascularization. Stress testing is not recommended in asymptomatic patients, particularly early after revascularization, Coronary CT angiography is increasingly used and provides high sensitive for the diagnosis of coronary artery stenosis. Average sensitivity and specificity for the diagnosis of in stent stenosis in pooled data are 79% and 81%, respectively. Limitations include blooming artifacts and low feasibility in patients with small stents or thick struts. Anatomical and functional cardiac imaging modalities are corner stone for the assessment of patients after PCI and provide salient diagnostic and prognostic information. Current imaging techniques cans serve as gate keeper for coronary angiography, thus limiting the risk of invasive procedures to those who are likely to benefit from subsequent revascularization. The determination of which modality to apply requires careful identification of merits and limitation of each technique as well as the unique characteristic of each individual patient.

Keywords: coronary artery disease, stress testing, cardiac imaging, restenosis

Procedia PDF Downloads 171
93 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 114
92 Spin Rate Decaying Law of Projectile with Hemispherical Head in Exterior Trajectory

Authors: Quan Wen, Tianxiao Chang, Shaolu Shi, Yushi Wang, Guangyu Wang

Abstract:

As a kind of working environment of the fuze, the spin rate decaying law of projectile in exterior trajectory is of great value in the design of the rotation count fixed distance fuze. In addition, it is significant in the field of devices for simulation tests of fuze exterior ballistic environment, flight stability, and dispersion accuracy of gun projectile and opening and scattering design of submunition and illuminating cartridges. Besides, the self-destroying mechanism of the fuze in small-caliber projectile often works by utilizing the attenuation of centrifugal force. In the theory of projectile aerodynamics and fuze design, there are many formulas describing the change law of projectile angular velocity in external ballistic such as Roggla formula, exponential function formula, and power function formula. However, these formulas are mostly semi-empirical due to the poor test conditions and insufficient test data at that time. These formulas are difficult to meet the design requirements of modern fuze because they are not accurate enough and have a narrow range of applications now. In order to provide more accurate ballistic environment parameters for the design of a hemispherical head projectile fuze, the projectile’s spin rate decaying law in exterior trajectory under the effect of air resistance was studied. In the analysis, the projectile shape was simplified as hemisphere head, cylindrical part, rotating band part, and anti-truncated conical tail. The main assumptions are as follows: a) The shape and mass are symmetrical about the longitudinal axis, b) There is a smooth transition between the ball hea, c) The air flow on the outer surface is set as a flat plate flow with the same area as the expanded outer surface of the projectile, and the boundary layer is turbulent, d) The polar damping moment attributed to the wrench hole and rifling mark on the projectile is not considered, e) The groove of the rifle on the rotating band is uniform, smooth and regular. The impacts of the four parts on aerodynamic moment of the projectile rotation were obtained by aerodynamic theory. The surface friction stress of the projectile, the polar damping moment formed by the head of the projectile, the surface friction moment formed by the cylindrical part, the rotating band, and the anti-truncated conical tail were obtained by mathematical derivation. After that, the mathematical model of angular spin rate attenuation was established. In the whole trajectory with the maximum range angle (38°), the absolute error of the polar damping torque coefficient obtained by simulation and the coefficient calculated by the mathematical model established in this paper is not more than 7%. Therefore, the credibility of the mathematical model was verified. The mathematical model can be described as a first-order nonlinear differential equation, which has no analytical solution. The solution can be only gained as a numerical solution by connecting the model with projectile mass motion equations in exterior ballistics.

Keywords: ammunition engineering, fuze technology, spin rate, numerical simulation

Procedia PDF Downloads 152