Search results for: mobile-assisted language learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9710

Search results for: mobile-assisted language learning

3710 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment

Authors: Atma Sahu

Abstract:

After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.

Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems

Procedia PDF Downloads 99
3709 Protocol for Consumer Research in Academia for Community Marketing Campaigns

Authors: Agnes J. Otjen, Sarah Keller

Abstract:

A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.

Keywords: consumer, research, marketing, communications

Procedia PDF Downloads 143
3708 A Reflection on the Professional Development Journey of Science Educators

Authors: M. Shaheed Hartley

Abstract:

Science and mathematics are regarded as gateway subjects in South Africa as they are the perceived route to careers in science, engineering, technology and mathematics (STEM). One of the biggest challenges that the country faces is the poor achievement of learners in these two learning areas in the external high school exit examination. To compound the problem many national and international benchmark tests paint a bleak picture of the state of science and mathematics in the country. In an attempt to address this challenge, the education department of the Eastern Cape Province invited the Science Learning Centre of the University of the Western Cape to provide training to their science teachers in the form of a structured course conducted on a part-time basis in 2010 and 2011. The course was directed at improving teachers’ content knowledge, pedagogical strategies and practical and experimental skills. A total of 41 of the original 50 science teachers completed the course and received their certificates in 2012. As part of their continuous professional development, 31 science teachers enrolled for BEd Hons in science education in 2013 and 28 of them completed the course in 2014. These students graduated in 2015. Of the 28 BEd Hons students who completed the course 23 registered in 2015 for Masters in Science Education and were joined by an additional 3 students. This paper provides a reflection by science educators on the training, supervision and mentorship provided to them as students of science education. The growth and development of students through their own reflection and understanding as well as through the eyes of the lecturers and supervisors that took part in the training provide the evaluation of the professional development process over the past few years. This study attempts to identify the merits, challenges and limitations of this project and the lessons to be learnt on such projects. It also documents some of the useful performance indicators with a view to developing a framework for good practice for such programmes.

Keywords: reflection, science education, professional development, rural schools

Procedia PDF Downloads 199
3707 Lexical Classification of Compounds in Berom: A Semantic Description of N-V Nominal Compounds

Authors: Pam Bitrus Marcus

Abstract:

Compounds in Berom, a Niger-Congo language that is spoken in parts of central Nigeria, have been understudied, and the semantics of N-V nominal compounds have not been sufficiently delineated. This study describes the lexical classification of compounds in Berom and, specifically, examines the semantics of nominal compounds with N-V constituents. The study relied on a data set of 200 compounds that were drawn from Bere Naha (a newsletter publication in Berom). Contrary to the nominalization process in defining the lexical class of compounds in languages, the study revealed that verbal and adjectival classes of compounds are also attested in Berom and N-V nominal compounds have an agentive or locative interpretation that is not solely determined by the meaning of the constituents of the compound but by the context of the usage.

Keywords: berom, berom compounds, nominal compound, N-V compounds

Procedia PDF Downloads 82
3706 IRIS An Interactive Video Game for Children with Long-Term Illness in Hospitals

Authors: Ganetsou Evanthia, Koutsikos Emmanouil, Austin Anna Maria

Abstract:

Information technology has long served the needs of individuals for learning and entertainment, but much less for children in sickness. The aim of the proposed online video game is to provide immersive learning opportunities as well as essential social and emotional scenarios for hospital-bound children with long-term illness. Online self-paced courses on chosen school subjects, including specialised software and multisensory assessments, aim at enhancing children’s academic achievement and sense of inclusion, while doctor minigames familiarise and educate young patients on their medical conditions. Online ethical dilemmas will offer children opportunities to contemplate on the importance of medical procedures and following assigned medication, often challenging for young patients; they will therefore reflect on their condition, reevaluate their perceptions about hospitalisation, and assume greater personal responsibility for their progress. Children’s emotional and psychosocial needs are addressed by engaging in social conventions, such as interactive, daily, collaborative mini games with other hospitalised peers, like virtual competitive sports games, weekly group psychodrama sessions, and online birthday parties or sleepovers. Social bonding is also fostered by having a virtual pet to interact with and take care of, as well as a virtual nurse to discuss and reflect on the mood of the day, engage in constructive dialogue and perspective taking, and offer reminders. Access to the platform will be available throughout the day depending on the patient’s health status. The program is designed to minimise escapism and feelings of exclusion, and can flexibly be adapted to offer post-treatment and a support online system at home.

Keywords: long-term illness, children, hospital, interactive games, cognitive, socioemotional development

Procedia PDF Downloads 80
3705 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate

Authors: E. Calil, L. A. Pereira

Abstract:

The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.

Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production

Procedia PDF Downloads 166
3704 Combating Corruption to Enhance Learner Academic Achievement: A Qualitative Study of Zimbabwean Public Secondary Schools

Authors: Onesmus Nyaude

Abstract:

The aim of the study was to investigate participants’ views on how corruption can be combated to enhance learner academic achievement. The study was undertaken on three select public secondary institutions in Zimbabwe. This study also focuses on exploring the various views of educators; parents and the learners on the role played by corruption in perpetuating the seemingly existing learner academic achievement disparities in various educational institutions. The study further interrogates and examines the nexus between the prevalence of corruption in schools and the subsequent influence on the academic achievement of learners. Corruption is considered a form of social injustice; hence in Zimbabwe, the general consensus is that it is perceived rife to the extent that it is overtaking the traditional factors that contributed to the poor academic achievement of learners. Coupled to this, have been the issue of gross abuse of power and some malpractices emanating from concealment of essential and official transactions in the conduct of business. Through proposing robust anti-corruption mechanisms, teaching and learning resources poured in schools would be put into good use. This would prevent the unlawful diversion and misappropriation of the resources in question which has always been the culture. This study is of paramount significance to curriculum planners, teachers, parents, and learners. The study was informed by the interpretive paradigm; thus qualitative research approaches were used. Both probability and non-probability sampling techniques were adopted in ‘site and participants’ selection. A representative sample of (150) participants was used. The study found that the majority of the participants perceived corruption as a social problem and a human right threat affecting the quality of teaching and learning processes in the education sector. It was established that corruption prevalence within institutions is as a result of the perpetual weakening of ethical values and other variables linked to upholding of ‘Ubuntu’ among general citizenry. It was further established that greediness and weak systems are major causes of rampant corruption within institutions of higher learning and are manifesting through abuse of power, bribery, misappropriation and embezzlement of material and financial resources. Therefore, there is great need to collectively address the problem of corruption in educational institutions and society at large. The study additionally concludes that successful combating of corruption will promote successful moral development of students as well as safeguarding their human rights entitlements. The study recommends the adoption of principles of good corporate governance within educational institutions in order to successfully curb corruption. The study further recommends the intensification of interventionist strategies and strengthening of systems in educational institutions as well as regular audits to overcome the problem associated with rampant corruption cases.

Keywords: academic achievement, combating, corruption, good corporate governance, qualitative study

Procedia PDF Downloads 249
3703 A Self-Study of the Facilitation of Science Teachers’ Action Research

Authors: Jawaher A. Alsultan, Allen Feldman

Abstract:

With the rapid switch to remote learning due to the COVID-19 pandemic, science teachers were suddenly required to teach their classes online. This breakneck shift to eLearning raised the question of how teacher educators could support science teachers who wanted to use reform-based methods of instruction while using virtual technologies. In this retrospective self-study, we, two science teacher educators, examined our practice as we worked with science teachers to implement inquiry, discussion, and argumentation [IDA] through eLearning. Ten high school science teachers from a large school district in the southeastern US participated virtually in the COVID-19 Community of Practice [COVID-19 CoP]. The CoP met six times from the end of April through May 2020 via Zoom. Its structure was based on a model of action research called enhanced normal practice [ENP], which includes exchanging stories, trying out ideas, and systematic inquiry. Data sources included teacher educators' meeting notes and reflective conversations, audio recordings of the CoP meetings, teachers' products, and post-interviews of the teachers. Findings included a new understanding of the role of existing relationships, shared goals, and similarities in the participants' situations, which helped build trust in the CoP, and the effects of our paying attention to the science teachers’ needs led to a well-functioning CoP. In addition, we became aware of the gaps in our knowledge of how the teachers already used apps in their practice, which they then shared with all of us about how they could be used for online teaching using IDA. We also identified the need to pay attention to feelings about tensions between the teachers and us around the expectations for final products and the project's primary goals. We found that if we are to establish relationships between us as facilitators and teachers that are honest, fair, and kind, we must express those feelings within the collective, dialogical processes that can lead to learning by all members of the CoP, whether virtual or face-to-face.

Keywords: community of practice, facilitators, self-study, action research

Procedia PDF Downloads 132
3702 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure

Authors: Jiang Niu, Yue Jiang

Abstract:

With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.

Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure

Procedia PDF Downloads 211
3701 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model

Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.

Abstract:

This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.

Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM

Procedia PDF Downloads 395
3700 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 152
3699 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 148
3698 Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science

Authors: Alaina Caulkett, Audra Selkowitz, Lauren Harter, Aimee DeFoe

Abstract:

Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future.

Keywords: computer science education, online professional development, professional development, robotics education, video-based instruction

Procedia PDF Downloads 105
3697 Retranslation of Orientalism: Reading Said in Arabic

Authors: Fadil Elmenfi

Abstract:

Edward Said, in his book Culture and Imperialism, devotes the introduction to the Arabic translation. He claims that the fading echo of Orientalism in the Arab world is unlike the positive reflections of its counterpart elsewhere in the world. The probable reason behind his inquiry would be that the methodology Abu Deeb applied in translating Said's book contributed to the book having the limited impact which Said is referring to. The paper adds new insights to the body of theory and the effectiveness of the performance of translation from culture to culture. It presents a survey that can provide the reader with an overview of Said's Orientalism and the two Arabic translations of the book. It investigates some of the problems of translating cultural texts, more specifically translating features of Said's style.

Keywords: Orientalism, retranslation, Arabic Language, Muhammad Enani, Kamal Abu Deeb, Edward Said

Procedia PDF Downloads 527
3696 Students' Online Evaluation: Impact on the Polytechnic University of the Philippines Faculty's Performance

Authors: Silvia C. Ambag, Racidon P. Bernarte, Jacquelyn B. Buccahi, Jessica R. Lacaron, Charlyn L. Mangulabnan

Abstract:

This study aimed to answer the query, “What is the impact of Students Online Evaluation on PUP Faculty’s Performance?” The problem of the study was resolve through the objective of knowing the perceived impact of students’ online evaluation on PUP faculty’s performance. The objectives were carried through the application of quantitative research design and by conducting survey research method. The researchers utilized primary and secondary data. Primary data was gathered from the self-administered survey and secondary data was collected from the books, articles on both print-out and online materials and also other theses related study. Findings revealed that PUP faculty in general stated that students’ online evaluation made a highly positive impact on their performance based on their ‘Knowledge of Subject’ and ‘Teaching for Independent Learning’, giving a highest mean of 3.62 and 3.60 respectively., followed by the faculty’s performance which gained an overall means of 3.55 and 3.53 are based on their ‘Commitment’ and ‘Management of Learning’. From the findings, the researchers concluded that Students’ online evaluation made a ‘Highly Positive’ impact on PUP faculty’s performance based on all Four (4) areas. Furthermore, the study’s findings reveal that PUP faculty encountered many problems regarding the students’ online evaluation; the impact of the Students’ Online Evaluation is significant when it comes to the employment status of the faculty; and most of the PUP faculty recommends reviewing the PUP Online Survey for Faculty Evaluation for improvement. Hence, the researchers recommend the PUP Administration to revisit and revise the PUP Online Survey for Faculty Evaluation, specifically review the questions and make a set of questions that will be appropriate to the discipline or field of the faculty. Also, the administration should fully orient the students about the importance, purpose and impact of online faculty evaluation. And lastly, the researchers suggest the PUP Faculty to continue their positive performance and continue on being cooperative with the administrations’ purpose of addressing the students’ concerns and for the students, the researchers urged them to take the online faculty evaluation honestly and objectively.

Keywords: on-line Evaluation, faculty, performance, Polytechnic University of the Philippines (PUP)

Procedia PDF Downloads 413
3695 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder

Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi

Abstract:

With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.

Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor

Procedia PDF Downloads 161
3694 Fuzzy Set Approach to Study Appositives and Its Impact Due to Positional Alterations

Authors: E. Mike Dison, T. Pathinathan

Abstract:

Computing with Words (CWW) and Possibilistic Relational Universal Fuzzy (PRUF) are the two concepts which widely represent and measure the vaguely defined natural phenomenon. In this paper, we study the positional alteration of the phrases by which the impact of a natural language proposition gets affected and/or modified. We observe the gradations due to sensitivity/feeling of a statement towards the positional alterations. We derive the classification and modification of the meaning of words due to the positional alteration. We present the results with reference to set theoretic interpretations.

Keywords: appositive, computing with words, possibilistic relational universal fuzzy (PRUF), semantic sentiment analysis, set-theoretic interpretations

Procedia PDF Downloads 166
3693 Galvinising Higher Education Institutions as Creative, Humanised and Innovative Environments

Authors: A. Martins, I. Martins, O. Pereira

Abstract:

The purpose of this research is to focus on the importance of distributed leadership in universities and Higher Education Institutions (HEIs). The research question is whether there a significant finding in self-reported ratings of leadership styles of those respondents that are studying management. The study aims to further discover whether students are encouraged to become responsible and proactive citizens, to develop their skills set, specifically shared leadership and higher-level skills to inspire creation knowledge, sharing and distribution thereof. Contemporary organizations need active and responsible individuals who are capable to make decisions swiftly and responsibly. Leadership influences innovative results and education play a dynamic role in preparing graduates. Critical reflection of extant literature indicates a need for a culture of leadership and innovation to promote organizational sustainability in the globalised world. This study debates the need for HEIs to prepare the graduate for both organizations and society as a whole. This active collaboration should be the very essence of both universities and the industry in order for these to achieve responsible sustainability. Learning and innovation further depend on leadership efficacy. This study follows the pragmatic paradigm methodology. Primary data collection is currently being gathered via the web-based questionnaire link which was made available on the UKZN notice system. The questionnaire has 35 items with a Likert scale of five response options. The purposeful sample method was used, and the population entails the undergraduate and postgraduate students in the College of Law and Business, University of KwaZulu-Natal, South Africa. Limitations include the design of the study and the reliance on the quantitative data as the only method of primary data collection. This study is of added value for scholars and organizations in the innovation economy.

Keywords: knowledge creation, learning, performance, sustainability

Procedia PDF Downloads 290
3692 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 451
3691 Intersubjectivity of Forensic Handwriting Analysis

Authors: Marta Nawrocka

Abstract:

In each of the legal proceedings, in which expert evidence is carried out, a major concern is the assessment of the evidential value of expert reports. Judicial institutions, while making decisions, rely heavily on the expert reports, because they usually do not possess 'special knowledge' from a certain fields of science which makes it impossible for them to verify the results presented in the processes. In handwriting studies, the standards of analysis are developed. They unify procedures used by experts in comparing signs and in constructing expert reports. However, the methods used by experts are usually of a qualitative nature. They rely on the application of knowledge and experience of expert and in effect give significant range of margin in the assessment. Moreover, the standards used by experts are still not very precise and the process of reaching the conclusions is poorly understood. The above-mentioned circumstances indicate that expert opinions in the field of handwriting analysis, for many reasons, may not be sufficiently reliable. It is assumed that this state of affairs has its source in a very low level of intersubjectivity of measuring scales and analysis procedures, which consist elements of this kind of analysis. Intersubjectivity is a feature of cognition which (in relation to methods) indicates the degree of consistency of results that different people receive using the same method. The higher the level of intersubjectivity is, the more reliable and credible the method can be considered. The aim of the conducted research was to determine the degree of intersubjectivity of the methods used by the experts from the scope of handwriting analysis. 30 experts took part in the study and each of them received two signatures, with varying degrees of readability, for analysis. Their task was to distinguish graphic characteristics in the signature, estimate the evidential value of the found characteristics and estimate the evidential value of the signature. The obtained results were compared with each other using the Alpha Krippendorff’s statistic, which numerically determines the degree of compatibility of the results (assessments) that different people receive under the same conditions using the same method. The estimation of the degree of compatibility of the experts' results for each of these tasks allowed to determine the degree of intersubjectivity of the studied method. The study showed that during the analysis, the experts identified different signature characteristics and attributed different evidential value to them. In this scope, intersubjectivity turned out to be low. In addition, it turned out that experts in various ways called and described the same characteristics, and the language used was often inconsistent and imprecise. Thus, significant differences have been noted on the basis of language and applied nomenclature. On the other hand, experts attributed a similar evidential value to the entire signature (set of characteristics), which indicates that in this range, they were relatively consistent.

Keywords: forensic sciences experts, handwriting analysis, inter-rater reliability, reliability of methods

Procedia PDF Downloads 150
3690 A Quantitative Analysis of Rural to Urban Migration in Morocco

Authors: Donald Wright

Abstract:

The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.

Keywords: climate change, machine learning, migration, Morocco, urban development

Procedia PDF Downloads 161
3689 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 83
3688 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 87
3687 Development of Tutorial Courseware on Selected Topics in Mathematics, Science and the English Language

Authors: Alice D. Dioquino, Olivia N. Buzon, Emilio F. Aguinaldo, Ruel Avila, Erwin R. Callo, Cristy Ocampo, Malvin R. Tabajen, Marla C. Papango, Marilou M. Ubina, Josephine Tondo, Cromwell L. Valeriano

Abstract:

The main purpose of this study was to develop, evaluate and validate courseware on Selected Topics in Mathematics, Science, and the English Language. Specifically, it aimed to: 1. Identify the appropriate Instructional Systems Design (ISD) model in the development of the courseware material; 2. Assess the courseware material according to its: a. Content Characteristics; b. Instructional Characteristics; and c. Technical Characteristics 3. Find out if there is a significant difference in the performance of students before and after using the tutorial CAI. This research is developmental as well as a one group pretest-posttest design. The study had two phases. Phase I includes the needs analysis, writing of lessons and storyboard by the respective experts in each field. Phase II includes the digitization or the actual development of the courseware by the faculty of the ICT department. In this phase it adapted an instructional systems design (ISD) model which is the ADDIE model. ADDIE stands for Analysis, Design, Development, Implementation and Evaluation. Formative evaluation was conducted simultaneously with the different phases to detect and remedy any bugs in the courseware along the areas of content, instructional and technical characteristics. The expected output are the digitized lessons in Algebra, Biology, Chemistry, Physics and Communication Arts in English. Students and some IT experts validated the CAI material using the Evaluation Form by Wong & Wong. They validated the CAI materials as Highly Acceptable with an overall mean rating of 4.527and standard deviation of 0 which means that they were one in the ratings they have given the CAI materials. A mean gain was recorded and computing the t-test for dependent samples it showed that there were significant differences in the mean achievement of the students before and after the treatment (using CAI). The identified ISD model used in the development of the tutorial courseware was the ADDIE model. The quantitative analyses of data based on ratings given by the respondents’ shows that the tutorial courseware possess the characteristics and or qualities of a very good computer-based courseware. The ratings given by the different evaluators with regard to content, instructional, and technical aspects of the Tutorial Courseware are in conformity towards being excellent. Students performed better in mathematics, biology chemistry, physics and the English Communication Arts after they were exposed to the tutorial courseware.

Keywords: CAI, tutorial courseware, Instructional Systems Design (ISD) Model, education

Procedia PDF Downloads 350
3686 A Critical Discourse Analysis of Corporate Annual Reports in a Cross-Cultural Perspective: Views from Grammatical Metaphor and Systemic Functional Linguistics

Authors: Antonio Piga

Abstract:

The study of language strategies in financial and corporate discourse has always been vital for understanding how companies manage to communicate effectively with a wider customer base and offers new perspectives on how companies interact with key stakeholders, not only to convey transparency and an image of trustworthiness, but also to create affiliation and attract investment. In the light of Systemic Functional Linguistics, the purpose of this study is to examine and analyse the annual reports of Asian and Western joint-stock companies involved in oil refining and power generation from the point of view of the functions and frequency of grammatical metaphors. More specifically, grammatical metaphor - through the lens of Critical Discourse Analysis (CDA) - is used as a theoretical tool for analysing a synchronic cross-cultural study of the communicative strategies adopted by Asian and Western companies to communicate social and environmental sustainability and showcase their ethical values, performance and competitiveness to local and global communities and key stakeholders. According to Systemic Functional Linguistics, grammatical metaphor can be divided into two broad areas: ideational and interpersonal. This study focuses on the first type, ideational grammatical metaphor (IGM), which includes de-adjectival and de-verbal nominalisation. The dominant and more effective grammatical tropes used by Asian and Western corporations in their annual reports were examined from both a qualitative and quantitative perspective. The aim was to categorise and explain how ideational grammatical metaphor is constructed cross-culturally and presented through structural language patterns involving re-mapping between semantics and lexico-grammatical features. The results show that although there seem to be more differences than similarities in terms of the categorisation of the ideational grammatical metaphors conceptualised in the two case studies analysed, there are more similarities than differences in terms of the occurrence, the congruence of process types and the role and function of IGM. Through the immediacy and essentialism of compacting and condensing information, IGM seems to be an important linguistic strategy adopted in the rhetoric of corporate annual reports, contributing to the ideologies and actions of companies to report and promote efficiency, profit and social and environmental sustainability, thus advocating the engagement and investment of key stakeholders.

Keywords: corporate annual reports, cross-cultural perspective, ideational grammatical metaphor, rhetoric, systemic functional linguistics

Procedia PDF Downloads 53
3685 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle

Authors: Vaclav Sadilek, Miroslav Vorechovsky

Abstract:

The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.

Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle

Procedia PDF Downloads 407
3684 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 63
3683 Making Food Science Education and Research Activities More Attractive for University Students and Food Enterprises by Utilizing Open Innovative Space-Approach

Authors: Anna-Maria Saarela

Abstract:

At the Savonia University of Applied Sciences (UAS), curriculum and studies have been improved by applying an Open Innovation Space approach (OIS). It is based on multidisciplinary action learning. The key elements of OIS-ideology are work-life orientation, and student-centric communal learning. In this approach, every participant can learn from each other and innovations will be created. In this social innovation educational approach, all practices are carried out in close collaboration with enterprises in real-life settings, not in classrooms. As an example, in this paper, Savonia UAS’s Future Food RDI hub (FF) shows how OIS practices are implemented by providing food product development and consumer research services for enterprises in close collaboration with academicians, students and consumers. In particular one example of OIS experimentation in the field is provided by a consumer research carried out utilizing verbal analysis protocol combined with audio-visual observation (VAP-WAVO). In this case, all co-learners were acting together in supermarket settings to collect the relevant data for a product development and the marketing department of a company. The company benefitted from the results obtained, students were more satisfied with their studies, educators and academicians were able to obtain good evidence for further collaboration as well as renewing curriculum contents based on the requirements of working life. In addition, society will benefit over time as young university adults find careers more easily through their OIS related food science studies. Also this knowledge interaction model re-news education practices and brings working-life closer to educational research institutes.

Keywords: collaboration, education, food science, industry, knowledge transfer, RDI, student

Procedia PDF Downloads 376
3682 Komedya: St. Denis' Philippine Theater in the US

Authors: Nenita Pambid Domingo

Abstract:

The komedya otherwise known as moro-moro or pretending to be Moors, is a traditional Filipino play in the vernacular adapted from the Spanish comedia de capa y espada. It was used by Spanish colonizers in the Philippines, circa 1766 to evangelize and strengthen the faith of Indios or Filipino natives to Christianity. Unlike the Moros y Cristianos festival held all over Spain celebrating the Reconquista from the 8th to the 15th century, the Philippine Moro-Moro or Komedya is a romance between a Muslim and a Christian and the battles between Christians and Moros, where the Moros are always defeated and the Muslim prince is converted to the Christian faith and marries the Christian princess at the end of the play. For over 200 years, the komedya has been part of the Filipinos’ life and has been dubbed by some Philippine scholars as the Philippine’s national theater. Until now postings of performances in different parts of the Philippines in different Philippine languages are uploaded at youtube. In the US, “San Dionisio sa America (SDA),” an organization of natives from Barrio San Dionisio, Parañaque, Philippines has been performing the komedya for the past 16 years during their town’s fiesta, in honor of the barrio's patron saints St Denis of Paris, France and Saint Joseph whom the devotees fondly call "Tata Dune" and "Tata Hosep". The komedya performed in the US is infused with modern elements in the production and content, but retain the basic form in verse and the stylized war dance, marches, and singsong delivery of lines. Most of the Celebras or town fiestas and komedya performances are held at The Barnsdall Art Park and Gallery Theatre in Hollywood, Los Angeles. The presentation will focus on the linguistic and content analysis of the Tagalog verses in the 2010 komedya entitled Mga Prinsesa ng Cordova (The Princesses of Cordova) publicized as a modern komedya. The presentation will also touch on the healing function of the language and performance that is part of the town’s religious festivities. It will also look into the aesthetics of the production, audience reception, participation of the sponsors, producers called Hermana/Hermano Mayor, the performers who are a mix of Filipinos from the Philippines and Filipino-Americans who are starting to lose the Tagalog language and the non-Filipino participants, as well as the general audience who are from Parañaque and those not from Parañaque, who come to witness the event and enjoy the festivities.

Keywords: devotion, diaspora nationalism, komedya, st. denis of Paris, France, traditional Philippine theater

Procedia PDF Downloads 3216
3681 Co-Creation of an Entrepreneurship Living Learning Community: A Case Study of Interprofessional Collaboration

Authors: Palak Sadhwani, Susie Pryor

Abstract:

This paper investigates interprofessional collaboration (IPC) in the context of entrepreneurship education. Collaboration has been found to enhance problem solving, leverage expertise, improve resource allocation, and create organizational efficiencies. However, research suggests that successful collaboration is hampered by individual and organizational characteristics. IPC occurs when two or more professionals work together to solve a problem or achieve a common objective. The necessity for this form of collaboration is particularly prevalent in cross-disciplinary fields. In this study, we utilize social exchange theory (SET) to examine IPC in the context of an entrepreneurship living learning community (LLC) at a large university in the Western United States. Specifically, we explore these research questions: How are rules or norms established that govern the collaboration process? How are resources valued and distributed? How are relationships developed and managed among and between parties? LLCs are defined as groups of students who live together in on-campus housing and share similar academic or special interests. In 2007, the Association of American Colleges and Universities named living communities a high impact practice (HIP) because of their capacity to enhance and give coherence to undergraduate education. The entrepreneurship LLC in this study was designed to offer first year college students the opportunity to live and learn with like-minded students from diverse backgrounds. While the university offers other LLC environments, the target residents for this LLC are less easily identified and are less apparently homogenous than residents of other LLCs on campus (e.g., Black Scholars, LatinX, Women in Science and Education), creating unique challenges. The LLC is a collaboration between the university’s College of Business & Public Administration and the Department of Housing and Residential Education (DHRE). Both parties are contributing staff, technology, living and learning spaces, and other student resources. This paper reports the results an ethnographic case study which chronicles the start-up challenges associated with the co-creation of the LLC. SET provides a general framework for examining how resources are valued and exchanged. In this study, SET offers insights into the processes through which parties negotiate tensions resulting from approaching this shared project from very different perspectives and cultures in a novel project environment. These tensions occur due to a variety of factors, including team formation and management, allocation of resources, and differing output expectations. The results are useful to both scholars and practitioners of entrepreneurship education and organizational management. They suggest probably points of conflict and potential paths towards reconciliation.

Keywords: case study, ethnography, interprofessional collaboration, social exchange theory

Procedia PDF Downloads 144