Search results for: interface soil layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6464

Search results for: interface soil layer

464 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework

Authors: Ayat-Allah Bouramdane

Abstract:

Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.

Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability

Procedia PDF Downloads 173
463 Ethnobotanical Study, Phytochemical Screening, and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan

Authors: Randa M. T. Mohamed

Abstract:

Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation, and ethanolic extracts by maceration. Phytochemical screening was performed by thin-layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynecological problems were treated with 4 spices. Dermatological diseases were cured by 5 spices, while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated with one spice each. Other health problems like fatigue and loss of appetite, and low breast milk production were treated by 1, 3 and 2 spices, respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria, while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes, while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta-lactamase inhibitory activity. In conclusion, this study could contribute to conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effects. Detailed phytochemical and biological assays of these spices are recommended.

Keywords: spices, enthnobotany, antioxidant, betalactamase inhibition

Procedia PDF Downloads 30
462 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka

Authors: U. K. Hulihalli, Shantveerayya

Abstract:

Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.

Keywords: buckwheat, planting geometry, genotypes, fertility levels

Procedia PDF Downloads 175
461 Empowering Youth Through Pesh Poultry: A Transformative Approach to Addressing Unemployment and Fostering Sustainable Livelihoods in Busia District, Uganda

Authors: Bisemiire Anthony,

Abstract:

PESH Poultry is a business project proposed specifically to solve unemployment and income-related problems affecting the youths in the Busia district. The project is intended to transform the life of the youth in terms of economic, social and behavioral, as well as the domestic well-being of the community at large. PESH Poultry is a start-up poultry farm that will be engaged in the keeping of poultry birds, broilers and layers for the production of quality and affordable poultry meat and eggs respectively and other poultry derivatives targeting consumers in eastern Uganda, for example, hotels, restaurants, households and bakeries. We intend to use a semi-intensive system of farming, where water and some food are provided in a separate nighttime shelter for the birds; our location will be in Lumino, Busia district. The poultry project will be established and owned by Bisemiire Anthony, Nandera Patience, Naula Justine, Bwire Benjamin and other investors. The farm will be managed and directed by Nandera Patience, who has five years of work experience and business administration knowledge. We will sell poultry products, including poultry eggs, chicken meat, feathers and poultry manure. We also offer consultancy services for poultry farming. Our eggs and chicken meat are hygienic, rich in protein and high quality. We produce processes and packages to meet the standard organization of Uganda and international standards. The business project shall comprise five (5) workers on the key management team who will share various roles and responsibilities in the identified business functions such as marketing, finance and other related poultry farming activities. PESH Poultry seeks 30 million Ugandan shillings in long-term financing to cover start-up costs, equipment, building expenses and working capital. Funding for the launch of the business will be provided primarily by equity from the investors. The business will reach positive cash flow in its first year of operation, allowing for the expected repayment of its loan obligations. Revenue will top UGX 11,750,000, and net income will reach about UGX115 950,000 in the 1st year of operation. The payback period for our project is 2 years and 3 months. The farm plans on starting with 1000 layer birds and 1000 broiler birds, 20 workers in the first year of operation.

Keywords: chicken, pullets, turkey, ducks

Procedia PDF Downloads 93
460 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 125
459 Boiler Ash as a Reducer of Formaldehyde Emission in Medium-Density Fiberboard

Authors: Alexsandro Bayestorff da Cunha, Dpebora Caline de Mello, Camila Alves Corrêa

Abstract:

In the production of fiberboards, an adhesive based on urea-formaldehyde resin is used, which has the advantages of low cost, homogeneity of distribution, solubility in water, high reactivity in an acid medium, and high adhesion to wood. On the other hand, as a disadvantage, there is low resistance to humidity and the release of formaldehyde. The objective of the study was to determine the viability of adding industrial boiler ash to the urea formaldehyde-based adhesive for the production of medium-density fiberboard. The raw material used was composed of Pinus spp fibers, urea-formaldehyde resin, paraffin emulsion, ammonium sulfate, and boiler ash. The experimental plan, consisting of 8 treatments, was completely randomized with a factorial arrangement, with 0%, 1%, 3%, and 5% ash added to the adhesive, with and without the application of a catalyst. In each treatment, 4 panels were produced with density of 750 kg.m⁻³, dimensions of 40 x 40 x 1,5 cm, 12% urea formaldehyde resin, 1% paraffin emulsion and hot pressing at a temperature of 180ºC, the pressure of 40 kgf/cm⁻² for a time of 10 minutes. The different compositions of the adhesive were characterized in terms of viscosity, pH, gel time and solids, and the panels by physical and mechanical properties, in addition to evaluation using the IMAL DPX300 X-ray densitometer and formaldehyde emission by the perforator method. The results showed a significant reduction of all adhesive properties with the use of the catalyst, regardless of the treatment; while the percentage increase of ashes provided an increase in the average values of viscosity, gel time, and solids and a reduction in pH for the panels with a catalyst; for panels without catalyst, the behavior was the opposite, with the exception of solids. For the physical properties, the results of the variables of density, compaction ratio, and thickness were equivalent and in accordance with the standard, while the moisture content was significantly reduced with the use of the catalyst but without the influence of the percentage of ash. The density profile for all treatments was characteristic of medium-density fiberboard, with more compacted and dense surfaces when compared to the central layer. For thickness, the swelling was not influenced by the catalyst and the use of ash, presenting average values within the normalized parameters. For mechanical properties, the influence of ashes on the adhesive was negatively observed in the modulus of rupture from 1% and in the traction test from 3%; however, only this last property, in the percentages of 3% and 5%, were below the minimum limit of the norm. The use of catalyst and ashes with percentages of 3% and 5% reduced the formaldehyde emission of the panels; however, only the panels that used adhesive with catalyst presented emissions below 8mg of formaldehyde / 100g of the panel. In this way, it can be said that boiler ash can be added to the adhesive with a catalyst without impairing the technological properties by up to 1%.

Keywords: reconstituted wood panels, formaldehyde emission, technological properties of panels, perforator

Procedia PDF Downloads 72
458 Effect of Different Phosphorus Levels on Vegetative Growth of Maize Variety

Authors: Tegene Nigussie

Abstract:

Introduction: Maize is the most domesticated of all the field crops. Wild maize has not been found to date and there has been much speculation on its origin. Regardless of the validity of different theories, it is generally agreed that the center of origin of maize is Central America, primarily Mexico and the Caribbean. Maize in Africa is of a recent introduction although data suggest that it was present in Nigeria even before Columbus voyages. After being taken to Europe in 1493, maize was introduced to Africa and distributed (spread through the continent by different routes. Maize is an important cereal crop in Ethiopia in general, it is the primarily stable food, and rural households show strong preference. For human food, the important constituents of grain are carbohydrates (starch and sugars), protein, fat or oil (in the embryo) and minerals. About 75 percent of the kernel is starch, a range of 60.80 percent but low protein content (8-15%). In Ethiopia, the introduction of modern farming techniques appears to be a priority. However, the adoption of modern inputs by peasant farmers is found to be very slow, for example, the adoption rate of fertilizer, an input that is relatively adopted, is very slow. The difference in socio-economic factors lay behind the low rate of technological adoption, including price & marketing input. Objective: The aim of the study is to determine the optimum application rate or level of different phosphorus fertilizers for the vegetative growth of maize and to identify the effect of different phosphorus rates on the growth and development of maize. Methods: The vegetative parameter (above ground) measurement from five plants randomly sampled from the middle rows of each plot. Results: The interaction of nitrogen and maize variety showed a significant at (p<0.01) effect on plant height, with the application of 60kg/ha and BH140 maize variety in combination and root length with the application of 60kg/ha of nitrogen and BH140 variety of maize. The highest mean (12.33) of the number of leaves per plant and mean (7.1) of the number of nodes per plant can be used as an alternative for better vegetative growth of maize. Conclusion and Recommendation: Maize is one of the popular and cultivated crops in Ethiopia. This study was conducted to investigate the best dosage of phosphorus for vegetative growth, yield, and better quality of maize variety and to recommend a level of phosphorus rate and the best variety adaptable to the specific soil condition or area.

Keywords: leaf, carbohydrate protein, adoption, sugar

Procedia PDF Downloads 12
457 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 372
456 Ethnobotanical Study, Phytochemical Screening and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan

Authors: Randa M. T. Mohamed

Abstract:

Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation and ethanolic extracts by maceration. Phytochemical screening was performed by thin layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynaecological problems were treated by 4 spices. Dermatological diseases were cured by 5 spices while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated by one spice each. Other health problem like fatigue and loss of appetite and low breast milk production were treated by 1, 3 and 2 spices respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta lactamase inhibitory activity. In conclusion, this study could contribute in conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effect. Detailed phytochemical and biological assays of these spices are recommended.

Keywords: spices, ethnobotany, phytoconstituents, antioxidant, beta lactamase inhibition

Procedia PDF Downloads 79
455 Hydrogeophysical Investigations And Mapping of Ingress Channels Along The Blesbokspruit Stream In The East Rand Basin Of The Witwatersrand, South Africa

Authors: Melvin Sethobya, Sithule Xanga, Sechaba Lenong, Lunga Nolakana, Gbenga Adesola

Abstract:

Mining has been the cornerstone of the South African economy for the last century. Most of the gold mining in South Africa was conducted within the Witwatersrand basin, which contributed to the rapid growth of the city of Johannesburg and capitulated the city to becoming the business and wealth capital of the country. But with gradual depletion of resources, a stoppage in the extraction of underground water from mines and other factors relating to survival of the mining operations over a lengthy period, most of the mines were abandoned and left to pollute the local waterways and groundwater with toxins, heavy metal residue and increased acid mine drainage ensued. The Department of Mineral Resources and Energy commissioned a project whose aim is to monitor, maintain, and mitigate the adverse environmental impacts of polluted water mine water flowing into local streams affecting local ecosystems and livelihoods downstream. As part of mitigation efforts, the diagnosis and monitoring of groundwater or surface water polluted sites has become important. Geophysical surveys, in particular, Resistivity and Magnetics surveys, were selected as some of most suitable techniques for investigation of local ingress points along of one the major streams cutting through the Witwatersrand basin, namely the Blesbokspruit, which is found in the eastern part of the basin. The aim of the surveys was to provide information that could be used to assist in determining possible water loss/ ingress from the Blesbokspriut stream. Modelling of geophysical surveys results offered an in-depth insight into the interaction and pathways of polluted water through mapping of possible ingress channels near the Blesbokspruit. The resistivity - depth profile of the surveyed site exhibit a three(3) layered model with low resistivity values (10 to 200 Ω.m) overburden, which is underlain by a moderate resistivity weathered layer (>300 Ω.m), which sits on a more resistive crystalline bedrock (>500 Ω.m). Two locations of potential ingress channels were mapped across the two traverses at the site. The magnetic survey conducted at the site mapped a major NE-SW trending regional linearment with a strong magnetic signature, which was modeled to depth beyond 100m, with the potential to act as a conduit for dispersion of stream water away from the stream, as it shared a similar orientation with the potential ingress channels as mapped using the resistivity method.

Keywords: eletrictrical resistivity, magnetics survey, blesbokspruit, ingress

Procedia PDF Downloads 63
454 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
453 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
452 The Significance of Urban Space in Death Trilogy of Alejandro González Iñárritu

Authors: Marta Kaprzyk

Abstract:

The cinema of Alejandro González Iñárritu hasn’t been subjected to a lot of detailed analysis yet, what makes it an exceptionally interesting research material. The purpose of this presentation is to discuss the significance of urban space in three films of this Mexican director, that forms Death Trilogy: ‘Amores Perros’ (2000), ‘21 Grams’ (2003) and ‘Babel’ (2006). The fact that in the aforementioned movies the urban space itself becomes an additional protagonist with its own identity, psychology and the ability to transform and affect other characters, in itself warrants for independent research and analysis. Independently, such mode of presenting urban space has another function; it enables the director to complement the rest of characters. The basis for methodology of this description of cinematographic space is to treat its visual layer as a point of departure for a detailed analysis. At the same time, the analysis itself will be supported by recognised academic theories concerning special issues, which are transformed here into essential tools necessary to describe the world (mise-en-scène) created by González Iñárritu. In ‘Amores perros’ the Mexico City serves as a scenery – a place full of contradictions- in the movie depicted as a modern conglomerate and an urban jungle, as well as a labyrinth of poverty and violence. In this work stylistic tropes can be found in an intertextual dialogue of the director with photographies of Nan Goldin and Mary Ellen Mark. The story recounted in ‘21 Grams’, the most tragic piece in the trilogy, is characterised by almost hyperrealistic sadism. It takes place in Memphis, which on the screen turns into an impersonal formation full of heterotopias described by Michel Foucault and non-places, as defined by Marc Augé in his essay. By contrast, the main urban space in ‘Babel’ is Tokio, which seems to perfectly correspond with the image of places discussed by Juhani Pallasmaa in his works concerning the reception of the architecture by ‘pathological senses’ in the modern (or, even more adequately, postmodern) world. It’s portrayed as a city full of buildings that look so surreal, that they seem to be completely unsuitable for the humans to move between them. Ultimately, the aim of this paper is to demonstrate the coherence of the manner in which González Iñárritu designs urban spaces in his Death Trilogy. In particular, the author attempts to examine the imperative role of the cities that form three specific microcosms in which the protagonists of the Mexican director live their overwhelming tragedies.

Keywords: cinematographic space, Death Trilogy, film Studies, González Iñárritu Alejandro, urban space

Procedia PDF Downloads 333
451 Assessment of Genetic Variability of Potato Genotypes for Proline Under Salt Stress Conditions

Authors: Elchin Hajiyev, Afet Memmedova Dadash, Sabina Hajiyeva, Aynur Karimova, Ramiz Aliyev

Abstract:

Although potatoes have a wide distribution range, the yield potential of varieties varies greatly depending on the region. Our country is made up of agricultural regions with very different environmental characteristics.In this case, we cannot expect the introduced varieties to show the same adaptation to the different conditions of our country. For this reason, in our country, varieties with high general adaptability should be used, rather than varieties with special adaptability in certain areas. Soil salinization has become a global problem.Increased salinity has a serious impact on food security by reducing plant productivity. Plants have protective mechanisms of adaptation to salt stress, such as the synthesis of physiologically active substances, resistance to antioxidant stress and oxidation of membrane lipids. One of these substances is free proline. Our study revealed genetic variation in proline accumulation among samples exposed to stress factors.Changes in proline content under stress conditions were studied in 50 samples. There was wide variation across all treatments.The amount of proline varied between 7.2–37.7 μM/g under salinity conditions.The lowest rate was in the SF33 genotype (1.5 times more than the control (2.5 μM/g)).The highest level of proline under the influence of salt stress was in the SF45 genotype (7.25 times higher than the control (32.5 μM/g)). Our studies have found that the protective system reacts differently to the influence of stress factors. According to the results obtained on the amount of proline, adaptation mechanisms must be more actively activated to maintain metabolism and ensure viability in sensitive forms under the influence of stress factors. At high doses of the salt stressor, a tenfold increase in proline compared to the control indicates significant damage to the plant organism as a result of stress.To prevent damage to the body, the antioxidant system needs to quickly mobilize and work at full capacity in adverse conditions. An increase in the dose of the stress factor salt in our study caused a greater increase in the amount of free proline in plant tissues. Considering the functions of proline as an osmoprotector and antioxidant, it was found that increasing its amount is aimed at protecting the plant from the acute effects of stressors.

Keywords: genetic variability, potato, genotypes, proline, stress

Procedia PDF Downloads 49
450 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices

Authors: Ekta, G. K. Darbha

Abstract:

Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.

Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology

Procedia PDF Downloads 256
449 Biodegradation of Phenazine-1-Carboxylic Acid by Rhodanobacter sp. PCA2 Proceeds via Decarboxylation and Cleavage of Nitrogen-Containing Ring

Authors: Miaomiao Zhang, Sabrina Beckmann, Haluk Ertan, Rocky Chau, Mike Manefield

Abstract:

Phenazines are a large class of nitrogen-containing aromatic heterocyclic compounds, which are almost exclusively produced by bacteria from diverse genera including Pseudomonas and Streptomyces. Phenazine-1-carboxylic acid (PCA) as one of 'core' phenazines are converted from chorismic acid before modified to other phenazine derivatives in different cells. Phenazines have attracted enormous interests because of their multiple roles on biocontrol, bacterial interaction, biofilm formation and fitness of their producers. However, in spite of ecological importance, degradation as a part of phenazines’ fate only have extremely limited attention now. Here, to isolate PCA-degrading bacteria, 200 mg L-1 PCA was supplied as sole carbon, nitrogen and energy source in minimal mineral medium. Quantitative PCR and Reverse-transcript PCR were employed to study abundance and activity of functional gene MFORT 16269 in PCA degradation, respectively. Intermediates and products of PCA degradation were identified with LC-MS/MS. After enrichment and isolation, a PCA-degrading strain was selected from soil and was designated as Rhodanobacter sp. PCA2 based on full 16S rRNA sequencing. As determined by HPLC, strain PCA2 consumed 200 mg L-1 (836 µM) PCA at a rate of 17.4 µM h-1, accompanying with significant cells yield from 1.92 × 105 to 3.11 × 106 cells per mL. Strain PCA2 was capable of degrading other phenazines as well, including phenazine (4.27 µM h-1), pyocyanin (2.72 µM h-1), neutral red (1.30 µM h-1) and 1-hydroxyphenazine (0.55 µM h-1). Moreover, during the incubation, transcript copies of MFORT 16269 gene increased significantly from 2.13 × 106 to 8.82 × 107 copies mL-1, which was 2.77 times faster than that of the corresponding gene copy number (2.20 × 106 to 3.32 × 107 copies mL-1), indicating that MFORT 16269 gene was activated and played roles on PCA degradation. As analyzed by LC-MS/MS, decarboxylation from the ring structure was determined as the first step of PCA degradation, followed by cleavage of nitrogen-containing ring by dioxygenase which catalyzed phenazine to nitrosobenzene. Subsequently, phenylhydroxylamine was detected after incubation for two days and was then transferred to aniline and catechol. Additionally, genomic and proteomic analyses were also carried out for strain PCA2. Overall, the findings presented here showed that a newly isolated strain Rhodanobacter sp. PCA2 was capable of degrading phenazines through decarboxylation and cleavage of nitrogen-containing ring, during which MFORT 16269 gene was activated and played important roles.

Keywords: decarboxylation, MFORT16269 gene, phenazine-1-carboxylic acid degradation, Rhodanobacter sp. PCA2

Procedia PDF Downloads 223
448 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 264
447 Lithium and Sodium Ion Capacitors with High Energy and Power Densities based on Carbons from Recycled Olive Pits

Authors: Jon Ajuria, Edurne Redondo, Roman Mysyk, Eider Goikolea

Abstract:

Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors entirely based on non-Faradaic charge storage. Among them, Li-ion capacitors including a negative battery-type lithium intercalation electrode and a positive capacitor-type electrode have achieved tremendous progress and have gone up to commercialization. Inexpensive electrode materials from renewable sources have recently received increased attention since cost is a persistently major criterion to make supercapacitors a more viable energy solution, with electrode materials being a major contributor to supercapacitor cost. Additionally, Na-ion battery chemistries are currently under development as less expensive and accessible alternative to Li-ion based battery electrodes. In this work, we are presenting both lithium and sodium ion capacitor (LIC & NIC) entirely based on electrodes prepared from carbon materials derived from recycled olive pits. Yearly, around 1 million ton of olive pit waste is generated worldwide, of which a third originates in the Spanish olive oil industry. On the one hand, olive pits were pyrolized at different temperatures to obtain a low specific surface area semigraphitic hard carbon to be used as the Li/Na ion intercalation (battery-type) negative electrode. The best hard carbon delivers a total capacity of 270mAh/g vs Na/Na+ in 1M NaPF6 and 350mAh/g vs Li/Li+ in 1M LiPF6. On the other hand, the same hard carbon is chemically activated with KOH to obtain high specific surface area -about 2000 m2g-1- activated carbon that is further used as the ion-adsorption (capacitor-type) positive electrode. In a voltage window of 1.5-4.2V, activated carbon delivers a specific capacity of 80 mAh/g vs. Na/Na+ and 95 mAh/g vs. Li/Li+ at 0.1A /g. Both electrodes were assembled in the same hybrid cell to build a LIC/NIC. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5M Et4NBF4 electrolyte was also built. Both LIC & NIC demonstrates considerable improvements in the energy density over its EDLC counterpart, delivering a maximum energy density of 110Wh/Kg at a power density of 30W/kg AM and a maximum power density of 6200W/Kg at an energy density of 27 Wh/Kg in the case of NIC and a maximum energy density of 110Wh/Kg at a power density of 30W/kg and a maximum power density of 18000W/Kg at an energy density of 22 Wh/Kg in the case of LIC. In conclusion, our work demonstrates that the same biomass waste can be adapted to offer a hybrid capacitor/battery storage device overcoming the limited energy density of corresponding double layer capacitors.

Keywords: hybrid supercapacitor, Na-Ion capacitor, supercapacitor, Li-Ion capacitor, EDLC

Procedia PDF Downloads 201
446 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 483
445 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy

Abstract:

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing

Procedia PDF Downloads 172
444 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application

Authors: Ramesh P., Aby Joseph

Abstract:

Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.

Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling

Procedia PDF Downloads 133
443 Analysis of Reduced Mechanisms for Premixed Combustion of Methane/Hydrogen/Propane/Air Flames in Geometrically Modified Combustor and Its Effects on Flame Properties

Authors: E. Salem

Abstract:

Combustion has been used for a long time as a means of energy extraction. However, in recent years, there has been a further increase in air pollution, through pollutants such as nitrogen oxides, acid etc. In order to solve this problem, there is a need to reduce carbon and nitrogen oxides through learn burning modifying combustors and fuel dilution. A numerical investigation has been done to investigate the effectiveness of several reduced mechanisms in terms of computational time and accuracy, for the combustion of the hydrocarbons/air or diluted with hydrogen in a micro combustor. The simulations were carried out using the ANSYS Fluent 19.1. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios and adding small amounts of hydrogen into the fuel blends then analyzing the flammable limit, the reduction in NOx and CO emissions, then comparing it to experimental data. By solving the conservations equations, several global reduced mechanisms (2-9-12) were obtained. These reduced mechanisms were simulated on a 2D cylindrical tube with dimensions of 40 cm in length and 2.5 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air blends to visualize the flame characteristics than were compared with experimental data. Once the results were within acceptable range, the geometry of the combustor was modified through changing the length, diameter, adding hydrogen by volume, and changing the equivalence ratios from lean to rich in the fuel blends, the results on flame temperature, shape, velocity and concentrations of radicals and emissions were observed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity and geometry of the tube lead to an increase of the temperature and CO2 emissions, highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio. Addition of hydrogen blends into combustor fuel blends resulted in; reduction in CO and NOx emissions, expansion of the flammable limit, under the condition of having same laminar flow, and varying equivalence ratio with hydrogen additions. The production of NO is reduced because the combustion happens in a leaner state and helps in solving environmental problems.

Keywords: combustor, equivalence-ratio, hydrogenation, premixed flames

Procedia PDF Downloads 114
442 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 132
441 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 187
440 Anti-Acanthamoeba Activities of Fatty Acid Salts and Fatty Acids

Authors: Manami Masuda, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives: Fatty acid salts are a type of anionic surfactant and are produced from fatty acids and alkali. Moreover, fatty acid salts are known to have potent antibacterial activities. Acanthamoeba is ubiquitously distributed in the environment including sea water, fresh water, soil and even from the air. Although generally free-living, Acanthamoeba can be an opportunistic pathogen, which could cause a potentially blinding corneal infection known as Acanthamoeba keratitis. So, in this study, we evaluated the anti-amoeba activity of fatty acid salts and fatty acids to Acanthamoeba castellanii ATCC 30010. Materials and Methods: The antibacterial activity of 9 fatty acid salts (potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K), linolenate (C18:3K)) tested on cells of Acanthamoeba castellanii ATCC 30010. Fatty acid salts (concentration of 175 mM and pH 10.5) were prepared by mixing the fatty acid with the appropriate amount of KOH. The amoeba suspension mixed with KOH with a pH adjusted solution was used as the control. Fatty acids (concentration of 175 mM) were prepared by mixing the fatty acid with Tween 80 (20 %). The amoeba suspension mixed with Tween 80 (20 %) was used as the control. The anti-amoeba method, the amoeba suspension (3.0 × 104 cells/ml trophozoites) was mixed with the sample of fatty acid potassium (final concentration of 175 mM). Samples were incubated at 30°C, for 10 min, 60 min, and 180 min and then the viability of A. castellanii was evaluated using plankton counting chamber and trypan blue stainings. The minimum inhibitory concentration (MIC) against Acanthamoeba was determined using the two-fold dilution method. The MIC was defined as the minimal anti-amoeba concentration that inhibited visible amoeba growth following incubation (180 min). Results: C8K, C10K, and C12K were the anti-amoeba effect of 4 log-unit (99.99 % growth suppression of A. castellanii) incubated time for 180 min against A. castellanii at 175mM. After the amoeba, the suspension was mixed with C10K or C12K, destroying the cell membrane had been observed. Whereas, the pH adjusted control solution did not exhibit any effect even after 180 min of incubation with A. castellanii. Moreover, C6, C8, and C18:3 were the anti-amoeba effect of 4 log-unit incubated time for 60 min. C4 and C18:2 exhibited a 4-log reduction after 180 min incubation. Furthermore, the minimum inhibitory concentration (MIC) was determined. The MIC of C10K, C12K and C4 were 2.7 mM. These results indicate that C10K, C12K and C4 have high anti-amoeba activity against A. castellanii and suggest C10K, C12K and C4 have great potential for antimi-amoeba agents.

Keywords: Fatty acid salts, anti-amoeba activities, Acanthamoeba, fatty acids

Procedia PDF Downloads 479
439 Archaic Ontologies Nowadays: Music of Rituals

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

Many of the interrogations or dilemmas of the contemporary world found the answer in what was generically called the appeal to matrix. This genuine spiritual exercise of re-connection of the present to origins, to the primary source, revealed the ontological condition of timelessness, ahistorical, immutable (epi)phenomena, of those pure essences concentrated in the archetypal-referential layer of the human existence. The musical creation was no exception to this trend, the impasse generated by the deterministic excesses of the whole serialism or, conversely, by some questionable results of the extreme indeterminism proper to the avant-garde movements, stimulating the orientation of many composers to rediscover a universal grammar, as an emanation of a new ‘collective’ order (reverse of the utopian individualism). In this context, the music of oral tradition and therefore the world of the ancient modes represented a true revelation for the composers of the twentieth century, who were suddenly in front of some unsuspected (re)sources, with a major impact on all levels of edification of the musical work: morphology, syntax, timbrality, semantics etc. For the contemporary Romanian creators, the music of rituals, existing in the local archaic culture, opened unsuspected perspectives for which it meant to be a synthetic, inclusive and recoverer vision, where the primary (archetypal) genuine elements merge with the latest achievements of language of the European composers. Thus, anchored in a strong and genuine modal source, the compositions analysed in this paper evoke, in a manner as modern as possible, the atmosphere of some ancestral rituals such as: the invocation of rain during the drought (Paparudele, Scaloianul), funeral ceremony (Bocetul), traditions specific to the winter holidays and new year (Colinda, Cântecul de stea, Sorcova, Folklore traditional dances) etc. The reactivity of those rituals in the sound context of the twentieth century meant potentiating or resizing the archaic spirit of the primordial symbolic entities, in terms of some complexity levels generated by the technique of harmonies of chordal layers, of complex aggregates (gravitational or non-gravitational, geometric), of the mixture polyphonies and with global effect (group, mass), by the technique of heterophony, of texture and cluster, leading to the implementation of some processes of collective improvisation and instrumental theatre.

Keywords: archetype, improvisation, polyphony, ritual, instrumental theatre

Procedia PDF Downloads 304
438 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 98
437 High-Resolution Facial Electromyography in Freely Behaving Humans

Authors: Lilah Inzelberg, David Rand, Stanislav Steinberg, Moshe David Pur, Yael Hanein

Abstract:

Human facial expressions carry important psychological and neurological information. Facial expressions involve the co-activation of diverse muscles. They depend strongly on personal affective interpretation and on social context and vary between spontaneous and voluntary activations. Smiling, as a special case, is among the most complex facial emotional expressions, involving no fewer than 7 different unilateral muscles. Despite their ubiquitous nature, smiles remain an elusive and debated topic. Smiles are associated with happiness and greeting on one hand and anger or disgust-masking on the other. Accordingly, while high-resolution recording of muscle activation patterns, in a non-interfering setting, offers exciting opportunities, it remains an unmet challenge, as contemporary surface facial electromyography (EMG) methodologies are cumbersome, restricted to the laboratory settings, and are limited in time and resolution. Here we present a wearable and non-invasive method for objective mapping of facial muscle activation and demonstrate its application in a natural setting. The technology is based on a recently developed dry and soft electrode array, specially designed for surface facial EMG technique. Eighteen healthy volunteers (31.58 ± 3.41 years, 13 females), participated in the study. Surface EMG arrays were adhered to participant left and right cheeks. Participants were instructed to imitate three facial expressions: closing the eyes, wrinkling the nose and smiling voluntary and to watch a funny video while their EMG signal is recorded. We focused on muscles associated with 'enjoyment', 'social' and 'masked' smiles; three categories with distinct social meanings. We developed a customized independent component analysis algorithm to construct the desired facial musculature mapping. First, identification of the Orbicularis oculi and the Levator labii superioris muscles was demonstrated from voluntary expressions. Second, recordings of voluntary and spontaneous smiles were used to locate the Zygomaticus major muscle activated in Duchenne and non-Duchenne smiles. Finally, recording with a wireless device in an unmodified natural work setting revealed expressions of neutral, positive and negative emotions in face-to-face interaction. The algorithm outlined here identifies the activation sources in a subject-specific manner, insensitive to electrode placement and anatomical diversity. Our high-resolution and cross-talk free mapping performances, along with excellent user convenience, open new opportunities for affective processing and objective evaluation of facial expressivity, objective psychological and neurological assessment as well as gaming, virtual reality, bio-feedback and brain-machine interface applications.

Keywords: affective expressions, affective processing, facial EMG, high-resolution electromyography, independent component analysis, wireless electrodes

Procedia PDF Downloads 246
436 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance

Authors: Sanjay Shukla

Abstract:

Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.

Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus

Procedia PDF Downloads 118
435 Using Collaborative Planning to Develop a Guideline for Integrating Biodiversity into Land Use Schemes

Authors: Sagwata A. Manyike, Hulisani Magada

Abstract:

The South African National Biodiversity Institute is in the process of developing a guideline which sets out how biodiversity can be incorporated into land use (zoning) schemes. South Africa promulgated its Spatial Planning and Land Use Management Act in 2015 and the act seeks, amongst other things, to bridge the gap between spatial planning and land use management within the country. In addition, the act requires local governments to develop wall-to-wall land use schemes for their entire jurisdictions as they had previously only developed them for their urban areas. At the same time, South Africa has a rich history of systematic conservation planning whereby Critical Biodiversity Areas and Ecological Support Areas have been spatially delineated at a scale appropriate for spatial planning and land use management at the scale of local government. South Africa is also in the process of spatially delineating ecological infrastructure which is defined as naturally occurring ecosystems which provide valuable services to people such as water and climate regulation, soil formation, disaster risk reduction, etc. The Biodiversity and Land Use Project, which is funded by the Global Environmental Facility through the United Nations Development Programme is seeking to explore ways in which biodiversity information and ecological infrastructure can be incorporated into the spatial planning and land use management systems of local governments. Towards this end, the Biodiversity and Land Use Project have developed a guideline which sets out how local governments can integrate biodiversity into their land-use schemes as a way of not only ensuring sustainable development but also as a way helping them prepare for climate change. In addition, by incorporating biodiversity into land-use schemes, the project is exploring new ways of protecting biodiversity through land use schemes. The Guideline for Incorporating Biodiversity into Land Use Schemes was developed as a response to the fact that the National Land Use Scheme Guidelines only indicates that local governments needed to incorporate biodiversity without explaining how this could be achieved. The Natioanl Guideline also failed to specify which biodiversity-related layers are compatible with which land uses or what the benefits of incorporating biodiversity into the schemes will be for that local government. The guideline, therefore, sets out an argument for why biodiversity is important in land management processes and proceeds to provide a step by step guideline for how schemes can integrate priority biodiversity layers. This guideline will further be added as an addendum to the National Land Use Guidelines. Although the planning act calls for local government to have wall to wall schemes within 5 years of its enactment, many municipalities will not meet this deadline and so this guideline will support them in the development of their new schemes.

Keywords: biodiversity, climate change, land use schemes, local government

Procedia PDF Downloads 177