Search results for: simulated concrete pore solution (SPS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9324

Search results for: simulated concrete pore solution (SPS)

3354 Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability

Authors: Mahsa Pishdar

Abstract:

Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain.

Keywords: food traceability, industry 4.0, internet of things, block chain, best worst method, marcos

Procedia PDF Downloads 211
3353 Rapid Biosynthesis of Silver-Montmorillonite Nanocomposite Using Water Extract of Satureja hortensis L. and Evaluation of the Antibacterial Capacities

Authors: Sajjad Sedaghat

Abstract:

In this work, facile and green biosynthesis and characterization of silver–montmorillonite (MMT) nanocomposite is reported at room temperature. Silver nanoparticles (Ag–NPs) were synthesized into the interlamellar space of (MMT) by using water extract of Satureja hortensis L as reducing agent. The MMT was suspended in the aqueous AgNO₃ solution, and after the absorption of silver ions, Ag⁺ was reduced using water extract of Satureja hortensis L to Ag°. Evaluation of the antibacterial properties are also reported. The nanocomposite was characterized by ultraviolet-visible spectroscopy (UV–Vis), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM study showed the formation of nanocomposite using water extract of Satureja hortensis L in the 4.88 – 26.70 nm range and average particles size were 15.79 nm also the XRD study showed that the particles have a face-centered cubic (fcc) structure. The nanocomposite showed the antibacterial properties against Gram-positive and Gram-negative bacteria.

Keywords: antibacterial effects, montmorillonite, Satureja hortensis l, transmission electron microscopy, nanocomposite

Procedia PDF Downloads 174
3352 Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older

Authors: Jeoffrey Oostrom, Robbert James Schlingmann, Hani Alers

Abstract:

This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it.

Keywords: dementia care, medical data visualization, quality of life, smart companion

Procedia PDF Downloads 146
3351 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 303
3350 Corrosion Protection of Structural Steel by Surfactant Containing Reagents

Authors: D. Erdenechimeg, T. Bujinlkham, N. Erdenepurev

Abstract:

The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.

Keywords: corrosion, linear polarization resistance, coating, surfactant

Procedia PDF Downloads 104
3349 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.

Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm

Procedia PDF Downloads 378
3348 Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge

Authors: L. M. Chinh

Abstract:

Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge.

Keywords: SHM system, design and installation, Vam Cong bridge, construction stage, acoustic emission method (AE)

Procedia PDF Downloads 241
3347 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa

Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini

Abstract:

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.

Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time

Procedia PDF Downloads 154
3346 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-doped with Bismuth and Zinc

Authors: B.Benalioua, I.Benyamina, A.Bentouami, B.Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, Zn co-doped TiO2 treated at 670°C for 2 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi-Zn-TiO2 (670°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-Zn-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-Zn-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-Zn-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 70 minutes, whereas with the P25-TiO2 discoloration is achieved after 120 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 314
3345 Synthesis, Characterization and Photocatalytic Performance of TiO2 Co-Doped with Sulfur and Nitrogen

Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury

Abstract:

The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the S, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material S-N-TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the S-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of S-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic S-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.

Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping

Procedia PDF Downloads 367
3344 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: supercritical CO2, zinc-electroplating, sodium fluoride, electroplating

Procedia PDF Downloads 567
3343 Post Harvest Losses and Food Security in Northeast Nigeria What Are the Key Challenges and Concrete Solutions

Authors: Adebola Adedugbe

Abstract:

The challenge of post-harvest losses poses serious threats for food security in Nigeria and the north-eastern part with the country losing about $9billion annually due to postharvest losses in the sector. Post-harvest loss (PHL) is the quantitative and qualitative loss of food in various post-harvest operations. In Nigeria, post-harvest losses (PHL) have been a major challenge to food security and improved farmer’s income. In 2022, the Nigerian government had said over 30 percent of food produced by Nigerian farmers perish during post-harvest. For many in northeast Nigeria, agriculture is the predominant source of livelihood and income. The persistent communal conflicts, flood, decade-old attacks by boko haram and insurgency in this region have disrupted farming activities drastically, with farmlands becoming insecure and inaccessible as communities are forced to abandon ancestral homes, The impact of climate change is also affecting agricultural and fishing activities, leading to shortage of food supplies, acute hunger and loss of livelihood. This has continued to impact negatively on the region and country’s food production and availability making it loose billions of US dollars annually in income in this sector. The root cause of postharvest losses among others in crops, livestock and fisheries are lack of modern post-harvest equipment, chemical and lack of technologies used for combating losses. The 2019 Global Hunger Index showed Nigeria’s case was progressing from a ‘serious to alarming level’. As part of measures to address the problem of post-harvest losses experienced by farmers, the federal government of Nigeria concessioned 17 silos with 6000 metric tonne storage space to private sector to enable farmers to have access to storage facilities. This paper discusses the causes, effects and solutions in handling post-harvest losses and optimize returns on food security in northeast Nigeria.

Keywords: farmers, food security, northeast Nigeria, postharvest loss

Procedia PDF Downloads 78
3342 An Analysis of How Students Perceive Their Self-Efficacy in Online Speaking Classes

Authors: Heny Hartono, Cecilia Titiek Murniati

Abstract:

The pandemic has given teachers and students no other choice but having full online learning. In such an emergency situation as the time of the covid-19 pandemic, the application of LMS (Learner Management System) in higher education is the most reasonable solution for students and teachers. In fact, the online learning requires all elements of a higher education systems, including the human resources, infrastructure, and supporting systems such as the application, server, and stable internet connection. The readiness of the higher education institution in preparing the online system may secure those who are involved in the online learning process. It may also result in students’ self-efficacy in online learning. This research aimed to investigate how students perceive their self-efficacy in online English learning, especially in speaking classes which is considered as a productive language skill. This research collects qualitative data with narrative inquiry involving 25 students of speaking classes as the respondents. The results of this study show that students perceive their self-efficacy in speaking online classes as not very high.

Keywords: self-efficacy, online learning, speaking class, college students, e-learning

Procedia PDF Downloads 103
3341 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.

Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks

Procedia PDF Downloads 405
3340 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre

Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar

Abstract:

With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.

Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm

Procedia PDF Downloads 230
3339 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: neural networks, pattern learning, security, wireless sensor networks

Procedia PDF Downloads 406
3338 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 111
3337 Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS

Authors: Aniruddha Joshi

Abstract:

This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output.

Keywords: automated sand casting production system, simulation, WITNESS software, performance evaluation

Procedia PDF Downloads 792
3336 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 309
3335 Effect of Treated Peat Soil on the Plasticity Index and Hardening Time

Authors: Siti Nur Aida Mario, Farah Hafifee Ahmad, Rudy Tawie

Abstract:

Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry.

Keywords: additives, hardening, peat soil, plasticity index, soil stabilization

Procedia PDF Downloads 331
3334 Developing Family-Based Eco-Citizenship with Social Media: A Mixed Methods Collective Case Study of Families Looking to Adopt Ecologically Responsible Actions Using Facebook

Authors: Michel T. Leger, Shawn Martin

Abstract:

Leading an ecologically responsible lifestyle represents a difficult challenge. Though research in environmental education does point to an increase in the intention to act more responsibly towards the environment, this intent does not seem to translate to concrete ecological action. This mixed methods collective case study explores the adoption of ecological actions in the family, a context of socio-ecological transformation rarely examined in the scientific literature. More specifically, it takes into account the popular use of social media today to explore the potential role social media, namely Facebook, in promoting environmental action. In other words, for families who are intent on adopting an ecologically friendly lifestyle, could the use of Facebook positively affect the way family members relate to the environment and bring about real change in their daily household actions? To answer this question, twenty-one families living in an urban setting were recruited and then divided them into two distinct groups. The first group of families attempted to lower their household electrical bill as part of a private Facebook group, while the other aimed to do the same, but without the directed use of social media. For both groups, we recorded the amount of kilowatt-hours used during the project as well as the amount used for the same months the previous year, adjusting for temperature variations. Exit interviews were also conducted with each family in order to try to understand the processes of eco-citizenship development in the context of family. Results seem to suggest that both virtual social networks and one-on-one support can help to increase environmental awareness in participating family. Interestingly, families from the Facebook group seemed to demonstrate a higher degree of environmental engagement, and younger family members in this group were more active in the processes of collective behavioral change.

Keywords: environmental education, family-based eco-citizenship, social media, case study

Procedia PDF Downloads 153
3333 Examining the Discursive Hegemony of British Energy Transition Narratives

Authors: Antonia Syn

Abstract:

Politicians’ outlooks on the nature of energy futures and an ‘Energy Transition’ have evolved considerably alongside a steady movement towards renewable energies, buttressed by lower technology costs, rising environmental concerns, and favourable national policy decisions. This paper seeks to examine the degree to which an energy transition has become an incontrovertible ‘status quo’ in parliament, and whether politicians share similar understandings of energy futures or narrate different stories under the same label. Parliamentarians construct different understandings of the same reality, in the form of co-existing and competing discourses, shaping and restricting how policy problems and solutions are understood and tackled. Approaching energy policymaking from a parliamentary discourse perspective draws directly from actors’ concrete statements, offering an alternative to policy literature debates revolving around inductive policy theories. This paper uses computer-assisted discourse analysis to describe fundamental discursive changes in British parliamentary debates around energy futures. By applying correspondence cluster analyses to Hansard transcripts from 1986 to 2010, we empirically measure the policy positions of Labour and Conservative politicians’ parliamentary speeches during legislatively salient moments preceding significant energy transition-related policy decisions. Results show the concept of a technology-based, market-driven transition towards fossil-free and nuclear-free renewables integration converged across Labour and the Conservatives within three decades. Specific storylines underwent significant change, particularly in relation to international outlooks, environmental framings, treatments of risk, and increases in rhetoric. This study contributes to a better understanding of the role politics plays in the energy transition, highlighting how politicians’ values and beliefs inevitably determine and delimit creative policymaking.

Keywords: quantitative discourse analysis, energy transition, renewable energy, British parliament, public policy

Procedia PDF Downloads 163
3332 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 394
3331 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 90
3330 In vitro Antioxidant, Anticancer Properties and Probiotic Characteristics of Selected Lactic Acid Bacteria Strains

Authors: M. G. Shehata, S. A. El Sohaimy, Marwa M. Abu-Serie, Nourhan M. Abd El-Aziz

Abstract:

Probiotic strains can potentially be used as bio-preservatives and functional food supplement. Eight lactic acid bacteria strains (LAB) Lactobacillus brevis NRRL B-4527; Streptococcus thermophilus BLM 58; Pediococcusacidilactici ATCC 8042; Lactobacillus rhamnosus CCUG 1452; Lactobacillus curvatus ATCC 51436; Lactococcuslactis sub sp. lactisDSM 20481; Lactobacillus plantarum DMSZ 20079 and Lactobacillus plantarumTF103 were selected to screen the antioxidant, anticancer potential and probiotic properties. LAB strains exhibited good probiotic, antioxidant properties and showed antagonistic activity against food-borne pathogenic (Bacillus subtilis DB 100 host; Candida albicans ATCCMYA-2876; Clostridium botulinum ATCC 3584; Escherichia coli BA 12296; Klebsiellapneumoniae ATCC12296; Salmonella senftenberg ATCC 8400 and Staphylococcus aureus NCTC 10788). Further, in vitro probiotic properties of eight strains displayed excellent acid tolerance, bile tolerance, simulated gastrointestinal juice tolerance, in vitro adhesion ability for HT-29 cell line. The antioxidant effect of intracellular and cell-free extract of lactic acid bacteria strains was evaluated by various antioxidant assays, namely, resistance to hydrogen peroxide, DPPH radical scavenging, ABTS radical scavenging, and hydroxyl radical scavenging (HRS). The results showed that intracellular and cell-free supernatant of S. Thermophilus BLM 58, L. lactissubsp.lactis DSM 20481, P. acidilactici ATCC 8042, L. brevis NRRL B-4527 strains possess excellent antioxidant capacity. The intracellular of S. Thermophilus BLM 58 and P. acidilactici ATCC 8042 also showed excellent anticancer activity against Caco-2, MCF-7, HepG-2, and PC-3. Antioxidative property of selected lactic acid bacteria strains would be useful in the functional food manufacturing industry. They could beneficially affect the consumer by providing dietary source of antioxidants.

Keywords: anticancer activity, antioxidant activity, functional food, lactic acid bacteria, probiotic

Procedia PDF Downloads 226
3329 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data

Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh

Abstract:

Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.

Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data

Procedia PDF Downloads 457
3328 The Effects of Advisor Status and Time Pressure on Decision-Making in a Luggage Screening Task

Authors: Rachel Goh, Alexander McNab, Brent Alsop, David O'Hare

Abstract:

In a busy airport, the decision whether to take passengers aside and search their luggage for dangerous items can have important consequences. If an officer fails to search and stop a bag containing a dangerous object, a life-threatening incident might occur. But stopping a bag unnecessarily means that the officer might lose time searching the bag and face an angry passenger. Passengers’ bags, however, are often cluttered with personal belongings of varying shapes and sizes. It can be difficult to determine what is dangerous or not, especially if the decisions must be made quickly in cases of busy flight schedules. Additionally, the decision to search bags is often made with input from the surrounding officers on duty. This scenario raises several questions: 1) Past findings suggest that humans are more reliant on an automated aid when under time pressure in a visual search task, but does this translate to human-human reliance? 2) Are humans more likely to agree with another person if the person is assumed to be an expert or a novice in these ambiguous situations? In the present study, forty-one participants performed a simulated luggage-screening task. They were partnered with an advisor of two different statuses (expert vs. novice), but of equal accuracy (90% correct). Participants made two choices each trial: their first choice with no advisor input, and their second choice after advisor input. The second choice was made within either 2 seconds or 8 seconds; failure to do so resulted in a long time-out period. Under the 2-second time pressure, participants were more likely to disagree with their own first choice and agree with the expert advisor, regardless of whether the expert was right or wrong, but especially when the expert suggested that the bag was safe. The findings indicate a tendency for people to assume less responsibility for their decisions and defer to their partner, especially when a quick decision is required. This over-reliance on others’ opinions might have negative consequences in real life, particularly when relying on fallible human judgments. More awareness is needed regarding how a stressful environment may influence reliance on other’s opinions, and how better techniques are needed to make the best decisions under high stress and time pressure.

Keywords: advisors, decision-making, time pressure, trust

Procedia PDF Downloads 178
3327 Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies

Authors: Farida Kaouah, Chahida Oussalah, Wassila Hachi, Salim Boumaza, Mohamed Trari

Abstract:

A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater.

Keywords: bisphenol A, photocatalytic degradation, sunlight, zinc oxide, Langmuir–Hinshelwood model, chemical oxygen demand

Procedia PDF Downloads 161
3326 Plant Leaf Recognition Using Deep Learning

Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath

Abstract:

Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.

Keywords: convolutional autoencoder, anomaly detection, web application, FLASK

Procedia PDF Downloads 166
3325 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 262