Search results for: voice segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 934

Search results for: voice segmentation

364 Violence and Aggression of Women in Native Canada: A Postcolonial Feminist Study of The Rez Sisters and Rose by Tomson Highway

Authors: Sonia Sharma

Abstract:

In a multicultural country like Canada, Colonialism is still maintained in the form of Violence and Oppression. The Aboriginals are persistently facing Oppression and Marginalization in their own land owing to Colonial presence. Women in particular are getting most affected. They are facing double burden of patriarchy and their being Native. Tomson Highway, the Cree Canadian playwright has deftly exposed the theme of women violence and empowerment. In his plays (The Rez Sisters and Rose) taken from his Rez Septology, he has depicted Aboriginal women’s predicaments and sufferings. But simultaneously also talks about their empowerment and aggression refuting and fighting back to patriarchy and oppression. The Rez Sisters portrays women with shattering images and as a victim of both the male dominating society and the system. It represents the painful odyssey of the seven women facing several hardships. Rose represents women in entirely different light. They are shown more assertive and empowered raising their voice against the Violence and Discrimination meted out to them. The Aboriginal women in Canada are facing dual burden of Colonialism and Patriarchy which indeed is a Colonial construct. This paper is an attempt to explore the above facets Tomson Highway’s The Rez Sisters and Rose.

Keywords: violence, racism, discrimination, postcolonialism feminism

Procedia PDF Downloads 628
363 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 365
362 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 369
361 The Expanding Role of Islamic Law in the Current Indonesian Legal Reform

Authors: Muhammad Ilham Agus Salim, Saufa Ata Taqiyya

Abstract:

In many Muslim countries, secularization has successfully reduced the role of Islamic law as a formal legal source during this last century. The most obvious fact was the reform of Daulah Utsmaniyah to be Secular Republic of Turkey. Religion is strictly separated from the state authorities in many countries today. But these last decades in Indonesia, a remarkable fact is apparent. Islamic law has expanded its role in Indonesian legal system, especially in districts regulations. In Aceh province, as a case in point, shariah has been the basic source of law in all regulations. There are more provinces in Indonesia which adopted Islamic law as a formal legal source by the end of 2014. Different from some other countries which clearly stipulates the status of Islam in formal ways, Indonesian constitution formally does not render any recognition for Islam to be the formal religion of the state. But in this Muslim majority country, Islamic law takes a place in democratic way, namely on the basis of the voice of majority. This paper will analyze how this reality increases significantly since what so called by Indonesian reformation era (end of nineties). Some causes will be identified regarding this tendency of expansion of role. Some lessons learned also will be recommended as the concluding remarks by the end of the paper.

Keywords: Islamic law, Indonesia, legal reform, Syariah local regulation

Procedia PDF Downloads 350
360 Sperm Flagellum Center-Line Tracing in 4D Stacks Using an Iterative Minimal Path Method

Authors: Paul Hernandez-Herrera, Fernando Montoya, Juan Manuel Rendon, Alberto Darszon, Gabriel Corkidi

Abstract:

Intracellular calcium ([Ca2+]i) regulates sperm motility. The analysis of [Ca2+]i has been traditionally achieved in two dimensions while the real movement of the cell takes place in three spatial dimensions. Due to optical limitations (high speed cell movement and low light emission) important data concerning the three dimensional movement of these flagellated cells had been neglected. Visualizing [Ca2+]i in 3D is not a simple matter since it requires complex fluorescence microscopy techniques where the resulting images have very low intensity and consequently low SNR (Signal to Noise Ratio). In 4D sequences, this problem is magnified since the flagellum oscillates (for human sperm) at least at an average frequency of 15 Hz. In this paper, a novel approach to extract the flagellum’s center-line in 4D stacks is presented. For this purpose, an iterative algorithm based on the fast-marching method is proposed to extract the flagellum’s center-line. Quantitative and qualitative results are presented in a 4D stack to demonstrate the ability of the proposed algorithm to trace the flagellum’s center-line. The method reached a precision and recall of 0.96 as compared with a semi-manual method.

Keywords: flagellum, minimal path, segmentation, sperm

Procedia PDF Downloads 284
359 How the Writer Tells the Story Should Be the Primary Concern rather than Who Can Write about Whom: The Limits of Cultural Appropriation Vis-à-Vis The Ethics of Narrative Empathy

Authors: Alexandra Cheira

Abstract:

Cultural appropriation has been theorised as a form of colonialism in which members of a dominant culture reduce cultural elements that are deeply meaningful to a minority culture to the category of the “exotic other” since they do not experience the oppression and discriminations faced by members of the minority culture. Yet, in the particular case of literature, writers such as Lionel Shriver and Bernardine Evaristo have argued that authors from a cultural majority have a right to write in the voice of someone from a cultural minority, hence attacking the idea that this is a form of cultural appropriation. By definition, Shriver and Evaristo claim, writers are supposed to write beyond their own culture, gender, class, and/ or race. In this light, this paper discusses the limits of cultural appropriation vis-à-vis the ethics of narrative empathy by addressing the mixed critical reception of Kathryn Stockett’s The Help (2009) and Jeanine Cummins’s American Dirt (2020). In fact, both novels were acclaimed as global eye-openers regarding the struggles of respectively South American migrants and African American maids. At the same time, both novelists have been accused of cultural appropriation by telling a story that is not theirs to tell, given the fact that they are white women telling these stories in what critics have argued is really an American voice telling a story to American readers.These claims will be investigated within the framework of Edward Said’s foundational examination of Orientalism in the field of postcolonial studies as a Western style for authoritatively restructuring the Orient. This means that Orientalist stereotypes regarding Eastern cultures have implicitly validated colonial and imperial pursuits, in the specific context of literary representations of African American and Mexican cultures by white writers. At the same time, the conflicted reception of American Dirt and The Help will be examined within the critical framework of narrative empathy as theorised by Suzanne Keen. Hence, there will be a particular focus on the way a reader’s heated perception that the author’s perspective is purely dishonest can result from a friction between an author’s intention and a reader’s experience of narrative empathy, while a shared sense of empathy between authors and readers can be a rousing momentum to move beyond literary response to social action.Finally, in order to assess that “the key question should not be who can write about whom, but how the writer tells the story”, the recent controversy surrounding Dutch author Marieke Lucas Rijneveld’s decision to resign the translation of American poet Amanda Gorman’s work into Dutch will be duly investigated. In fact, Rijneveld stepped out after journalist and activist Janice Deul criticised Dutch publisher Meulenhoff for choosing a translator who was not also Black, despite the fact that 22-year-old Gorman had selected the 29-year-old Rijneveld herself, as a fellow young writer who had likewise come to fame early on in life. In this light, the critical argument that the controversial reception of The Help reveals as much about US race relations in the early twenty-first century as about the complex literary transactions between individual readers and the novel itself will also be discussed in the extended context of American Dirt and white author Marieke Rijneveld’s withdrawal from the projected translation of Black poet Amanda Gorman.

Keywords: cultural appropriation, cultural stereotypes, narrative empathy, race relations

Procedia PDF Downloads 70
358 A Feminist Approach to the COVID-19 Lockdown Process in Turkey

Authors: Aykut Sigin

Abstract:

In feminist theory, home is usually regarded as an unsafe place for women to be in, as it continually produces inequalities between men and women, favoring the former, and maintains the patriarchal status quo. The second-wave feminists argued that women need to raise their concerns regarding domestic problems and this eventually led to the emergence of the motto 'the personal is political', pointing out to the fact that the domestic problems one woman experienced were essentially the problems of women in general as the patriarchal ideology manifested itself at home. Although this motto was from the late 1960s, it still holds significance today. In the golden era of the Internet, women could use social media to voice their concerns more easily than ever. Following this line of thought, the aim of this study is to analyze the domestic problems of the women in Turkey during the lockdown caused by COVID-19 through social media as they find themselves at home with their fathers, husbands and/or brothers for longer periods of time than ever before. For this purpose, an investigation of the posts shared under '#EvdeKal' ('StayAtHome') was carried out. The results of the study made it clear that women find the lockdown process to be problematic, that they express their domestic concerns rather freely through social media, and that the inequalities caused by the patriarchal ideology persist in the 21st century.

Keywords: COVID-19, lockdown, home, feminism

Procedia PDF Downloads 132
357 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 445
356 The Language of Hip-Hop and Rap in Tunisia: Symbol of Cultural Change in Post-Arab Spring Tunisia

Authors: Zouhir Gabsi

Abstract:

The Arab Spring has had noticeable effects on Tunisia in socio-economic, political, and cultural terms. Few have predicted that the music of hip-hop and rap could engage with the socio-political situation in Tunisia, especially after the downfall of Ben Ali’s regime. Having survived as underground music since the year 2000, the genre of hip-hop and rap remains an aberration from the folkloric tradition. By adhering to the socio-economic reality of the Tunisian street, rappers attempt to claim authenticity mainly in both thematic and language uses, and by usurping the power of ‘space’ from the regime’s control. With the songs’ fast-paced rhythms, catchy phrases, puns, vulgarisms, and linguistic innovations using metaphors, hip-hop, and rap have struck a chord with Tunisia’s youth. Tunisia’s new social reality has allowed Tunisian rappers to express dissent and voice people’s despair over the socio-economic and political situation. This paper argues that rap artists use language as a vehicle to claim the authenticity of their message. It also explores how the performative nature of the language of hip-hop and rap interacts with the Tunisian culture and argues the power of music in the context of political and socio-economic grievances in post-Arab Spring Tunisia.

Keywords: Arab Spring, hip-hop, eevolution, Tunisia, Tunisian Arabic

Procedia PDF Downloads 152
355 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 336
354 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 533
353 Practical Strategies: Challenges in Transforming Theoretical Know-How into Practice for Offering Value-Added Amenities and Services

Authors: Mohammad Ayub Khan

Abstract:

With increased market segmentation and competition in the hotel industry, a hotel’s ability to constantly renovate its services and amenities is a business practice that can be termed as an attitude that is not only flexible but also malleable as a result of which a hotel/property is continually poised to face the ever-changing nature of the hospitality industry and upgrades that keep the hotel or brand in competition with current competitors. One such challenge is to competitively and creatively market value-added amenities, upgraded technology, and marketing all of these as a package to not only stay relevant in the market but also to retain and enhance revenues to ensure the future financial health of a hotel. This delicate balance between staying relevant and financially viable is a crucial challenge that this poster will explore, analyze, and present by specifically looking at the ability of a hotel/brand to effectively translate its theoretical need and practice of constantly staying updated, including strategically renovating, upgrading, modifying its services, into a tangible business practice. In what ways do hotels face this challenge? In what areas of the hotel is this business concept/action most effective and profitable are just some questions that this paper will attempt to answer.

Keywords: hospitality theory, renovations, value-added amenities, strategic planning

Procedia PDF Downloads 367
352 Sexual Violence against Men in Conflicts: A Neglected Serious Issue

Authors: Olalekan Olaluwoye, Joanne Williams, Elizabeth Hoban, Sonia Brockington

Abstract:

Cases of sexual violence against men have been reported in at least twenty-five conflict situations in history. However, there is a paucity of academic literature and minimal media, policy and legal discussions on sexual violence against men. Most studies and discussions remain locked in the ‘male perpetrators, female victims’ paradigm. Male victims continue to suffer the consequences of sexual violence in conflict and post-conflict settings in silence. A rigorous narrative systematic review of the literature revealed few studies on the subject and those that exist have a narrow focus on rape as the only form of sexual violence despite the existence of other forms of sexual violence that have equally devastating effects. This paper argues that while research and discussions on sexual violence against women should continue, it is time to conduct rigorous mixed methods research to understand the experiences of men and boys survivors of sexual violence. There is a need to study sexual violence more broadly, without limiting it to rape, and to understand the determinants and health implications of sexual violence perpetrated on men. The paper concludes by proposing a research approach that gives voice to the experiences of male survivors of sexual violence in conflict and post-conflict settings.

Keywords: conflict, male survivors, post-conflict settings, sexual violence

Procedia PDF Downloads 151
351 Qatari Licensure System as Perceived by Teachers and School Leaders

Authors: Abdullah Abu-Tineh, Hissa Sadiq, Fatma Al-Mutawah, Youmen Chaaban

Abstract:

The past 20 years have seen a proliferation of empirical research into various licensure systems. Extensive quantitative work investigates these systems of appraisal from different countries, but there is far less research on the implementation of the Qatari licensure system and the adoption of professional standards. In this paper, we provided a quantitatively and qualitatively descriptive look at the process that moves educators from their point of entry into the profession through their certification as accomplished professionals. Specifically, we focused on the perceptions of teachers and school leaders on the licensure system currently adopted by Ministry of Education and Higher Education in Qatar. The paper aims to inform progress towards a system of reliable, valid, and nationally appropriate teacher and school leader evaluation procedures. Such a system can support decision-making based on a common, comprehensive set of standards that ensures the placement of only the most effective educators in Qatari schools. This paper was made possible by NPRP grant # (NPRP7-1224-5-178) from the Qatar national research fund (a member of Qatar foundation) to Abdullah M. Abu-Tineh. The statements made herein are solely the responsibility of the author.

Keywords: licensure system, professional standards, professional portfolio, educator voice

Procedia PDF Downloads 232
350 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 66
349 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 420
348 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 280
347 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 419
346 Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation

Authors: Shinhao Yang, Hsiao-Chien Huang, Chin-Hsiang Luo

Abstract:

The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2).

Keywords: fluorochrome, deposition, shielding effects, digital image processing, leakage ratio, personal protective equipment

Procedia PDF Downloads 322
345 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 147
344 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 120
343 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique

Authors: Sandhya Baskaran, Hari Kumar Nagabushanam

Abstract:

Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.

Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer

Procedia PDF Downloads 293
342 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat, and case recorded using longwave infrared, short wave infrared, medium wave infrared, and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using YOLO, background subtraction, silhouettes extraction, and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the principal component analysis and recognised using different classifiers. The comparative results with the different classifier show that linear discriminant analysis outperforms other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, YOLO

Procedia PDF Downloads 172
341 Human Computer Interaction Using Computer Vision and Speech Processing

Authors: Shreyansh Jain Jeetmal, Shobith P. Chadaga, Shreyas H. Srinivas

Abstract:

Internet of Things (IoT) is seen as the next major step in the ongoing revolution in the Information Age. It is predicted that in the near future billions of embedded devices will be communicating with each other to perform a plethora of tasks with or without human intervention. One of the major ongoing hotbed of research activity in IoT is Human Computer Interaction (HCI). HCI is used to facilitate communication between an intelligent system and a user. An intelligent system typically comprises of a system consisting of various sensors, actuators and embedded controllers which communicate with each other to monitor data collected from the environment. Communication by the user to the system is typically done using voice. One of the major ongoing applications of HCI is in home automation as a personal assistant. The prime objective of our project is to implement a use case of HCI for home automation. Our system is designed to detect and recognize the users and personalize the appliances in the house according to their individual preferences. Our HCI system is also capable of speaking with the user when certain commands are spoken such as searching on the web for information and controlling appliances. Our system can also monitor the environment in the house such as air quality and gas leakages for added safety.

Keywords: human computer interaction, internet of things, computer vision, sensor networks, speech to text, text to speech, android

Procedia PDF Downloads 362
340 The Trajectory of the Ball in Football Game

Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar

Abstract:

Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.

Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter

Procedia PDF Downloads 461
339 Kanga Traditional Costume as a Tool for Community Empowerment in Tanzania in Ubuntu perspective - A Literature Review

Authors: Meinrad Haule Lembuka

Abstract:

Introduction: Ubuntu culture represents African humanism with collective and positive feeling of people living together, interdependence, equally and peaceful etc. Overtime, Ubuntu culture developed varieties of communicative strategies to express experiences, feelings and knowledge. Khanga or kanga (garment) is among the Ubuntu cultural practice of Bantu speaking people along the East African coast following interaction with Arabs and Bantu speaking people to formulate Swahili culture. Kanga or Kanga is a Swahili word which means a traditional soft cotton cloths in varieties of colours, patterns, and styles which as a deep cultural, historical, and social significance not only in Tanzania but the rest of East African coast. Swahili culture is a sub culture of Ubuntu African culture which is rich in customs and rituals that serve to preserve goodness and life where Tanzania, like the rest of East African societies along the Indian coast engaged in kanga dressing custom under Swahili culture to express their feelings and knowledge sharing. After the independence of Tanzania (formerly Tanganyika) from British colonial rule, Kanga traditional dressing gained momentum in Swahili culture and spread to the rest of East Africa and beyond. To date kanga dressing holds a good position as a formal and informal tool for advocating marginalised groups, counselling, psychosocial therapy, liberation, compassion, love, justice, campaign, and cerebration etc. Methodology: A literature review method was guided by Ubuntu theory to assess the implications of kanga traditional dressing in empowering Tanzanian community. Findings: During slavery, slaves wore Kaniki and people despised Kaniki dressing due to its association with slavery. Ex-slave women seeking to become part of the Swahili society began to decorate their Kaniki clothes. After slavery was abolished in 1897, Kangas began to be used for self-empowerment and to indicate that the wearer had personal wealth. During colonial era, freedom of expressions for Africans were restricted by colonial masters thus Tanzanians used kanga to express the evils of colonialism and other social problems, Under Ubuntu value of unity and solidarity liberation and independence fighters crafted motto and liberation messages that were shared and spread rapidly in the community. Political parities like TANU used kanga to spread nationalism and Ujamaa policy. kanga is more than a piece of fabric-it is a space for women to voice unspeakable communication and a women-centred repository for indigenous knowledge, feminisms addressing social ills, happiness, campaigns, memories and reconciliation etc. Kanga provides an indirect voice and support vulnerable and marginalised populations and strongly it has proved to be a peaceful platform of capture attention of government and societies. Kanga textiles gained increased international fame when an Obama kanga design was produced upon the president’s election in 2008 and his visit to Tanzania in 2013. Conclusion: Kanga preserves and symbolises Swahili culture and contributes in realization of social justice, inclusion, national identity and unity. As an inclusive cultural tool, Kanga spread across Africa to international community and the practice has moved from being a woman domination dressing code to other sex orientations.

Keywords: African culture, Kanga, khanga, swahili culture, ubuntu

Procedia PDF Downloads 68
338 Video Text Information Detection and Localization in Lecture Videos Using Moments

Authors: Belkacem Soundes, Guezouli Larbi

Abstract:

This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.

Keywords: text detection, text localization, lecture videos, pseudo zernike moments

Procedia PDF Downloads 152
337 CVOIP-FRU: Comprehensive VoIP Forensics Report Utility

Authors: Alejandro Villegas, Cihan Varol

Abstract:

Voice over Internet Protocol (VoIP) products is an emerging technology that can contain forensically important information for a criminal activity. Without having the user name and passwords, this forensically important information can still be gathered by the investigators. Although there are a few VoIP forensic investigative applications available in the literature, most of them are particularly designed to collect evidence from the Skype product. Therefore, in order to assist law enforcement with collecting forensically important information from variety of Betamax VoIP tools, CVOIP-FRU framework is developed. CVOIP-FRU provides a data gathering solution that retrieves usernames, contact lists, as well as call and SMS logs from Betamax VoIP products. It is a scripting utility that searches for data within the registry, logs and the user roaming profiles in Windows and Mac OSX operating systems. Subsequently, it parses the output into readable text and html formats. One superior way of CVOIP-FRU compared to the other applications that due to intelligent data filtering capabilities and cross platform scripting back end of CVOIP-FRU, it is expandable to include other VoIP solutions as well. Overall, this paper reveals the exploratory analysis performed in order to find the key data paths and locations, the development stages of the framework, and the empirical testing and quality assurance of CVOIP-FRU.

Keywords: betamax, digital forensics, report utility, VoIP, VoIPBuster, VoIPWise

Procedia PDF Downloads 297
336 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 449
335 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74