Search results for: public transportation network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11164

Search results for: public transportation network

10594 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.

Keywords: car parking monitoring, sensor node, wireless sensor network, network protocol

Procedia PDF Downloads 538
10593 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 179
10592 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment

Authors: Danladi Ali

Abstract:

In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model

Procedia PDF Downloads 382
10591 A Comparative Analysis of the Role, Representations and Architectural Identity of Public Space in Medieval and Contemporary Cairo

Authors: Muhammad Feteha

Abstract:

The socio-political Middle East scene has radically changed over the last decade, and one major contributor to this change was the Egyptian revolution of 2011. The massive impact of this revolution that originally started as a small protest in the Tahrir square has attracted more scholars to study the public space in Egypt, where it has become a necessity in order to understand and improve the socio-political conditions. The status of public space in Egypt has been deteriorating due to many reasons, including privatization and neglect. This paper studies one of the major problems of the contemporary public space in Cairo, which is the lack of identity. This takes place through a comparative analysis between selected case studies from both medieval and contemporary Cairo. The theoretical framework upon which the analysis is based views public space as a ‘container of social action’ and a ‘product of spatial practice’. Through the ‘deciphering of space’, differences in the socio-political role, symbolism, and identity of public spaces between both eras are shown. The paper aims to extract some lessons from public space in medieval Cairo, which was truly the ‘centerpiece of the public realm’ and a ‘fundamental expressions’ of the unique trans-dynastic architectural identity of Cairo. In addition, it suggests some strategies to revive the Cairene identity of public space instead of constructing new ones to be only ‘utilitarian spaces used for circulation’ and lack any identity.

Keywords: architectural identity, Cairene public space, Islamic architectural history, production of space

Procedia PDF Downloads 192
10590 Estimation of Chronic Kidney Disease Using Artificial Neural Network

Authors: Ilker Ali Ozkan

Abstract:

In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.

Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis

Procedia PDF Downloads 447
10589 The Implementation of Information Security Audits in Public Sector: Perspective from Indonesia

Authors: Nur Imroatun Sholihat, Gresika Bunga Sylvana

Abstract:

Currently, cyber attack became an incredibly serious problem due to its increasing trend all over the world. Therefore, information security becomes prominent for every organization including public sector organization. In Indonesia, unfortunately, Ministry of Finance (MoF) is the only public sector organization that has already formally established procedure to assess its information security adequacy by performing information security audits (November 2017). We assess the implementation of information security audits in the MoF using qualitative data obtained by interviewing IT auditors and by analysis of related documents. For this reason, information security audit practice in the MoF could become the acceptable benchmark for all other public sector organizations in Indonesia. This study is important because, to the best of the author’s knowledge, our research into information security audits practice in Indonesia’s public sector have not been found yet. Results showed that information security audits performed mostly by doing pentest (penetration testing) to MoF’s critical applications.

Keywords: information security audit, information technology, Ministry of Finance of Indonesia, public sector organization

Procedia PDF Downloads 237
10588 Including Local Economic and Anthropometric Parameters in the Design of an Stand up Wheelchair

Authors: Urrutia Fernando, López Jessica, Sánchez Carlos, San Antonio Thalía

Abstract:

Ecuador, as a signatory country of the convention of the rights of persons with disabilities (CRPD) has, in the recent years, strengthened the structures and legal framework required to protect this minority comprised of 13.2% of its total population. However, the reality is that this group has disproportionately low earnings and low educational attainment in comparison with the general population. The main struggles, to promote job placement of wheelchairs users, are environmental discrimination caused by accessibility in structures and transportation, this mainly due to the cost, for private and public entities, of performing the reasonable accommodation they require. It is widely known that product development and production is needed to support effective implementation of the CRPD and that walking and standing are the major life activities, in this context the objective of this investigation is to promote job placement of wheelchair user in the province of Tungurahua by means of the design, production and marketing of a customized stand up wheelchair. Exploratory interviews and measurements were performed in a representative sample of working age wheelchairs users that develop their disability after achieving their physical maturity and that are capable of performing professional activities with their upper limbs, this in order to detect the user’s preference and determine the local economic and anthropometric parameters to be included in the wheelchair design. The findings reveal factors that uniquely impact quality of life and development for people with a mobility disability within the context of the province, first that transportation is a big issue since public buses does not have accessibility for wheelchair users and the absence of curb cuts and the presence of trash bins over the sidewalks among other hinders an economic independent mobility, second that the proposal based in the idea of modifying the wheelchairs to make it able to overcome certain obstacles helps people in wheelchair to improve their independent living and by reducing the costs of modification for the employer could improve their chances of finding work.

Keywords: anthropometrics, job placement, stand up wheelchair, user centered design

Procedia PDF Downloads 555
10587 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data

Authors: Ming Wei

Abstract:

Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.

Keywords: big data, smart card data, travel pattern, land use

Procedia PDF Downloads 285
10586 Analysis of Differences between Public and Experts’ Views Regarding Sustainable Development of Developing Cities: A Case Study in the Iraqi Capital Baghdad

Authors: Marwah Mohsin, Thomas Beach, Alan Kwan, Mahdi Ismail

Abstract:

This paper describes the differences in views on sustainable development between the general public and experts in a developing country, Iraq. This paper will answer the question: How do the views of the public differ from the generally accepted view of experts in the context of sustainable urban development in Iraq? In order to answer this question, the views of both the public and the experts will be analysed. These results are taken from a public survey and a Delphi questionnaire. These will be analysed using statistical methods in order to identify the significant differences. This will enable investigation of the different perceptions between the public perceptions and the experts’ views towards urban sustainable development factors. This is important due to the fact that different viewpoints between policy-makers and the public will impact on the acceptance by the public of any future sustainable development work that is undertaken. The brief findings of the statistical analysis show that the views of both the public and the experts are considered different in most of the variables except six variables show no differences. Those variables are ‘The importance of establishing sustainable cities in Iraq’, ‘Mitigate traffic congestion’, ‘Waste recycling and separating’, ‘Use wastewater recycling’, ‘Parks and green spaces’, and ‘Promote investment’.

Keywords: urban sustainability, experts views, public views, principle component analysis, PCA

Procedia PDF Downloads 127
10585 Distributed Energy Storage as a Potential Solution to Electrical Network Variance

Authors: V. Rao, A. Bedford

Abstract:

As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.

Keywords: energy storage, electrical losses, national grid, renewable energy, variance

Procedia PDF Downloads 317
10584 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 232
10583 Strategies Considered Effective for Funding Public Tertiary Institutions in Nigeria

Authors: Jacinta Ifeoma Obidile

Abstract:

The study sought to ascertain from the opinions of the business educators, effective strategies for funding public tertiary institutions in Anambra State Nigeria, for effective functioning and delivery. Funding of tertiary institutions has become so important following the dilapidated state of most of the public tertiary institutions in Nigeria. Tertiary institutions are known for the production of competitive and competent workforce in the nation. Considering the state of public tertiary institutions currently, one wonders if their objectives are achieved. Many scholars have identified funding as one of the major barriers to effective functioning of tertiary institutions. Although federal and state governments have been supporting the tertiary institutions, but their support seems not to be adequate. This study therefore ascertained from the perspective of business educators, other strategies for funding public tertiary institutions in Anambra State Nigeria, for effective functioning and delivery. Survey research design was adopted for the study. A total of 104 business educators from the public tertiary institutions in the State constituted the population. There was no sampling, hence the whole population was used. Structured questionnaire validated by three experts with a reliability coefficient of 0.82 was the instrument for data collection. Data collected were analyzed using mean and standard deviation. Findings from the study revealed that public-private partnership and external aids were among the strategies considered effective for funding public tertiary institutions. It was therefore recommended among others that associations like alumni should be strongly instituted in each of the public tertiary institutions so as to assist in the funding of tertiary institutions for effective functioning and delivery.

Keywords: strategies, funding, tertiary institutions, business educators

Procedia PDF Downloads 155
10582 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.

Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization

Procedia PDF Downloads 418
10581 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 232
10580 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 428
10579 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471
10578 The Neglected Elements of Implementing Strategic Succession Management in Public Organizations

Authors: François Chiocchio, Mahshid Gharibpour

Abstract:

Regardless of the extent to which succession management is implemented in the private sector, it is still overlooked in the public sector. Traditional succession management is evolving providing a better alignment between business strategies and HR strategies. Succession management brings sustainable effectiveness for succession programs through career path development, knowledge and skill transfer, job retention, as well as high-potential candidates’ empowerment for upcoming vacancies. By way of a systematic literature review, we bring into focus strategic succession management in public organizations and discuss best ways of implementation. 

Keywords: succession management, strategic succession management, public organization, succession management model

Procedia PDF Downloads 355
10577 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
10576 On the Efficiency of the Algerian FRR Sovereign Fund

Authors: Abdelkader Guendouz, Fatima Zohra Adel

Abstract:

Since about two decades, the Algerian government created a new instrument in the field of its fiscal policy, which is the FRR (Fonds de Régulation des Recettes). The FRR is a sovereign fund, which the initial role was saving the surplus generated by the fixation of a referential oil price to establish the state budget in the aim equilibrium between budgetary incomes and public expenditures. After a while, the government turns to use this instrument in boosting the public investment more than keeping for funding a deficit budget in periods of crisis. This lead to ask some justified questions about the efficiency of this sovereign fund and its real role.

Keywords: FRR sovereign fund, public expenditures, public investment, efficiency

Procedia PDF Downloads 337
10575 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
10574 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions

Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh

Abstract:

This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.

Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor

Procedia PDF Downloads 638
10573 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)

Authors: Muazzam A. Khan, Muhammad Wasim

Abstract:

Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.

Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict

Procedia PDF Downloads 532
10572 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 67
10571 Evaluation of the Spatial Performance of Ancient Cities in the Context of Landscape Architecture

Authors: Elvan Ender Altay, Zeynep Pirselimoglu Batman, Murat Zencirkiran

Abstract:

Ancient cities are, according to United Nations Educational, Scientific and Cultural Organization (UNESCO), landscape areas designed and created by people, at the same time naturally developing and constantly changing sustainable cultural landscapes. Ancient cities are the urban settlements where we can see the reflection of public lifestyle existed thousands of years ago. The conceptual and spatial traces in ancient cities, are crucial for examining the city history and its preservation. This study is intended to demonstrate the impacts of human life and physical environment on the cultural landscape. This research aims to protect and maintain cultural continuity of the ancient cities in Bursa which contain archeological and historical elements and could not majorly reach to the day because of not being protected and to show importance of landscape architecture to ensure this protection. In this context, ancient cities in Bursa were researched and a total of 7 ancient cities were identified. These ancient cities are; Apollonia, Lopadion, Nicaea, Myrleia, Cius, Daskyleion and Basilinopolis. In the next stage, the spatial performances of ancient cities were assessed by weighted criteria method. The highest score is the Nicaea Ancient City. Considering current situation of the ancient cities in Bursa, it is seen that most of them could not survive until our day due to lack of interest in these areas. As a result, according to the findings, it is a priority to create a protective band with green areas around the archaeological sites, thus adapting to nearby areas and emphasizing culture. In addition, proposals have been made to provide a transportation network that does not harm the ancient cities and the cultural landscape.

Keywords: ancient cities, Bursa, landscape, spatial performance

Procedia PDF Downloads 202
10570 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
10569 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization

Authors: Chen Yao, Wang Ke

Abstract:

Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.

Keywords: small towns, urbanization, public space, updating

Procedia PDF Downloads 228
10568 Interest Charges and Sustainability Challenges: The Case of OECD Countries

Authors: Aime Philombe Zapji Ymele

Abstract:

Servicing public debt is a significant budgetary burden. In the sense that the payment of interest charges is a liability on the balance sheet of the public budget and affects fiscal policy. Interest charges can sometimes become a burden if they crowd out private activities. In order to analyse and understand the determinants of the debt burden and its impact on the sustainability of public finances, the present work focuses on OECD countries. It is noted from the literature that the factors that determine interest charges are macroeconomic (inflation, GDP growth, and interest rates) and public finances (primary balance and public debt). After analysing a panel of 33 OECD countries and using ordinary least squares (OLS), we find that public debt, inflation, and long-term interest rates are positively correlated with interest charges. An increase in any of these variables leads to an increase in debt charges. On the other hand, a growth in GDP is negatively associated with interest charges. Indeed, an increase in GDP generates enough revenue to meet the repayment of debt charges. According to the empirical analysis, we can say that, despite the large and growing debt-to-GDP ratio of major OECD countries, interest charges are not a threat to the sustainability of public finances. However, it is important for these countries to reduce the ratio of public debt to GDP because, in the face of the many challenges (health, aging population, etc.) that are looming on the horizon, an increase in interest rates could bring with it considerable burdens that would threaten the budgetary balance of these states.

Keywords: interest charges, sustainability, public debt, interest rates

Procedia PDF Downloads 123
10567 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 147
10566 Scaffold on Trial: The Rhetorical Controversy of a Public Artifact in Minneapolis

Authors: Cynthia Pope

Abstract:

Though traditional art has been strong on showcasing aesthetics to imbue pleasantries, modern public art has been breaking trends to push citizens beyond the pleasure of seeing beauty. Contemporary public sculpture, in particular, has been the impetus of provoking questions about community standards, identity, and race relations. A phenomenon involving Scaffold, a sculpture by artist Sam Durant, became the focal point of contention within Minneapolis, Minnesota, recently. With intentions to better understand the power public sculpture has to disrupt community identity, in this book, It will use primarily rhetorical theory to explain how all parties involved—The Walker Art Museum, the Dakota Nation, Durant, and local citizens—participated in a controversy touching on racial politics, identity, culture, history and public art. This mixed-methods case study examines the public artifact contextually through historical and cultural frameworks. Findings in this project will reveal Scaffold to be represented as a tool of empowered Caucasians to the exclusion of marginalized people. This project also informs the fields of public rhetoric and political identity, marginalized voices, and community and social justice initiatives to include the difficult topic of race and identity.

Keywords: public art controversy, technical communication, community narrative, ambient rhetoric

Procedia PDF Downloads 82
10565 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 177