Search results for: over a finite field
9790 Static and Dynamic Analysis of Hyperboloidal Helix Having Thin Walled Open and Close Sections
Authors: Merve Ermis, Murat Yılmaz, Nihal Eratlı, Mehmet H. Omurtag
Abstract:
The static and dynamic analyses of hyperboloidal helix having the closed and the open square box sections are investigated via the mixed finite element formulation based on Timoshenko beam theory. Frenet triad is considered as local coordinate systems for helix geometry. Helix domain is discretized with a two-noded curved element and linear shape functions are used. Each node of the curved element has 12 degrees of freedom, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. Finite element matrices are derived by using exact nodal values of curvatures and arc length and it is interpolated linearly throughout the element axial length. The torsional moments of inertia for close and open square box sections are obtained by finite element solution of St. Venant torsion formulation. With the proposed method, the torsional rigidity of simply and multiply connected cross-sections can be also calculated in same manner. The influence of the close and the open square box cross-sections on the static and dynamic analyses of hyperboloidal helix is investigated. The benchmark problems are represented for the literature.Keywords: hyperboloidal helix, squared cross section, thin walled cross section, torsional rigidity
Procedia PDF Downloads 3789789 Thermodynamics during the Deconfining Phase Transition
Authors: Amal Ait El Djoudi
Abstract:
A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition.Keywords: equation of state, thermodynamics, deconfining phase transition, quark–gluon plasma (QGP)
Procedia PDF Downloads 4289788 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar
Abstract:
In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method
Procedia PDF Downloads 3519787 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.Keywords: numerical methods, induction furnaces, induction heating, finite element method, Comsol multiphysics software
Procedia PDF Downloads 4519786 Die Design for Flashless Forging of a Polymer Insulator Fitting
Authors: Pedram Khazaie, Sajjad Moein
Abstract:
In the conventional hot forging of Tongue, which is a fitting for polymer insulator, the material wasted to flash accounts for 20-30% of workpiece. In order to reduce the cost of forged products, this waste material must be minimized. In this study, a flashless forging die is designed and simulated using the finite element method (FEM). A solution to avoid overloading the die with a simple preform is also presented. Moreover, since in flashless forging, burr is formed on the edge of workpiece, a controlled flash forging method is proposed to solve this problem. The simulation results have been validated by experiments; achieving close agreement between simulated and experimental data. It was shown that numerical modeling is helpful in reducing cost and time in the manufacturing process.Keywords: burr formation, die design, finite element method, flashless forging
Procedia PDF Downloads 1599785 Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth and Chemical Composition
Authors: Najafi S., Heidai R., Jamei R., Tofigh F.
Abstract:
In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small.Keywords: carotenoid, Chlorophyll a, Chlorophyll b, DPPH, enzymes, flavonoid, germination, growth, phenol, proline, protein, magnetic field, phaseolus vulgaris
Procedia PDF Downloads 5789784 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran
Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh
Abstract:
The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis
Procedia PDF Downloads 3619783 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates
Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer
Abstract:
The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.Keywords: vibration, composite materials, finite element, APDL ANSYS
Procedia PDF Downloads 459782 Modal Analysis of FGM Plates Using Finite Element Method
Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi
Abstract:
Modal analysis of an FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FORTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.Keywords: FGM plates, modal analysis, natural frequency, finite element method
Procedia PDF Downloads 3429781 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation
Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping
Abstract:
In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.Keywords: explicit group method, finite difference, helmholtz equation, rotated grid, standard grid
Procedia PDF Downloads 4569780 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.Keywords: 3D printing, composite bushing, modal analysis, multi-material
Procedia PDF Downloads 1099779 Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass
Authors: Karen E. Supan
Abstract:
Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature.Keywords: biomass, switchgrass, thermal degradation, thermogravimetric analysis
Procedia PDF Downloads 1169778 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process
Authors: F. Al-Mufadi, F. Djavanroodi
Abstract:
During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.Keywords: SPD, ECAP, FEM, pure Al, mechanical properties
Procedia PDF Downloads 1819777 The Explanation for Dark Matter and Dark Energy
Authors: Richard Lewis
Abstract:
The following assumptions of the Big Bang theory are challenged and found to be false: the cosmological principle, the assumption that all matter formed at the same time and the assumption regarding the cause of the cosmic microwave background radiation. The evolution of the universe is described based on the conclusion that the universe is finite with a space boundary. This conclusion is reached by ruling out the possibility of an infinite universe or a universe which is finite with no boundary. In a finite universe, the centre of the universe can be located with reference to our home galaxy (The Milky Way) using the speed relative to the Cosmic Microwave Background (CMB) rest frame and Hubble's law. This places our home galaxy at a distance of approximately 26 million light years from the centre of the universe. Because we are making observations from a point relatively close to the centre of the universe, the universe appears to be isotropic and homogeneous but this is not the case. The CMB is coming from a source located within the event horizon of the universe. There is sufficient mass in the universe to create an event horizon at the Schwarzschild radius. Galaxies form over time due to the energy released by the expansion of space. Conservation of energy must consider total energy which is mass (+ve) plus energy (+ve) plus spacetime curvature (-ve) so that the total energy of the universe is always zero. The predominant position of galaxy formation moves over time from the centre of the universe towards the boundary so that today the majority of new galaxy formation is taking place beyond our horizon of observation at 14 billion light years.Keywords: cosmology, dark energy, dark matter, evolution of the universe
Procedia PDF Downloads 1429776 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam
Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra
Abstract:
Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity
Procedia PDF Downloads 3059775 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method
Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya
Abstract:
This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.Keywords: particle size reduction, micromixer, FDM modelling, wet etching
Procedia PDF Downloads 4319774 Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion
Authors: Xiaodong Wen, Lijuan Liu, Xinfeng Sun
Abstract:
A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster.Keywords: electric space propulsion, field reversed configuration, rotating magnetic field, transport phenomena
Procedia PDF Downloads 1409773 Heat Distribution Simulation on Transformer Using FEMM Software
Authors: N. K. Mohd Affendi, T. A. R. Tuan Abdullah, S. A. Syed Mustaffa
Abstract:
In power industry transformer is an important component and most of us familiar by the functioning principle of a transformer electrically. There are many losses occur during the operation of a transformer that causes heat generation. This heat, if not dissipated properly will reduce the lifetime and effectiveness of the transformer. Transformer cooling helps in maintaining the temperature rise of various paths. This paper proposed to minimize the ambient temperature of the transformer room in order to lower down the temperature of the transformer. A simulation has been made using finite element methods programs called FEMM (Finite Elements Method Magnetics) to create a virtual model based on actual measurement of a transformer. The generalization of the two-dimensional (2D) FEMM results proves that by minimizing the ambient temperature, the heat of the transformer is decreased. The modeling process and of the transformer heat flow has been presented.Keywords: heat generation, temperature rise, ambient temperature, FEMM
Procedia PDF Downloads 4039772 Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey
Authors: P. M. Keshtiban, M. Zadshakoyan
Abstract:
One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material.Keywords: experiment, FEM, friction coefficient, ring compression
Procedia PDF Downloads 4639771 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field
Authors: Taha Zakaraia Abdel Wahid
Abstract:
The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions
Procedia PDF Downloads 4959770 Effects of the Social Work Field Practicum on the Wellbeing of Non-Traditional and Underserved Students: A Mixed-Methods Study
Authors: Dana S. Smith, Angela Goins, Shahnaz Savani
Abstract:
Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium-sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations for anti-oppressive approaches for academic programs and implications for further research.Keywords: emotional wellbeing, field practicum, mixed-methods, social justice
Procedia PDF Downloads 1019769 Effects of the Social Work Field Practicum on the Wellbeing of Non-traditional and Underserved Students: A Mixed-Methods Study
Authors: Dana S. Smith, Angela Goins, Shahnaz Savani
Abstract:
Using a mixed-methods approach, this study explored costs to student wellbeing generated by the social work field practicum requirement. The project was conducted by faculty at a medium sized university in the United States. Social work educators and field practicum instructors participated in interviews. Students and former students completed surveys on the topic. The data analysis revealed emotional burdens as well as threats to student wellbeing in association with the fieldwork required for those in pursuit of a social work degree. The study includes recommendations of anti-oppressive approaches for academic programs and implications for further research.Keywords: emotional wellbeing, field practicum, mixed-methods, social justice
Procedia PDF Downloads 919768 The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter
Authors: C. Casini, V. Da Deppo, P. Zuppella, P. Chioetto, A. Slemer, F. Frassetto, M. Romoli, F. Landini, M. Pancrazzi, V. Andretta, E. Antonucci, A. Bemporad, M. Casti, Y. De Leo, M. Fabi, S. Fineschi, F. Frassati, C. Grimani, G. Jerse, P. Heinzel, K. Heerlein, A. Liberatore, E. Magli, G. Naletto, G. Nicolini, M.G. Pelizzo, P. Romano, C. Sasso, D. Spadaro, M. Stangalini, T. Straus, R. Susino, L. Teriaca, M. Uslenghi, A. Volpicelli
Abstract:
Solar Orbiter, launched on February 9th 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch.Keywords: solar orbiter, Metis, coronagraph, flat field panel, calibration, on-ground, performance
Procedia PDF Downloads 1069767 Analysis of Cracked Beams with Spalling Having Different Arrangements of the Reinforcement Bars Using Finite Element Analysis (FEA)
Authors: Rishabh Shukla, Achin Agrawal, Anupam Saxena, S. Mandal
Abstract:
The existence of a crack, affects the mechanical behaviour and various properties of a structure to a great degree. This paper focuses on recognizing the parameters that gets changed due to the formation of cracks and have a great impact on the performance of the structure. Spalling is a major concern as it leaves the reinforcement bars more susceptible to environmental attacks. Beams of cross section 300 mm × 500 mm are designed and for a calculated area of steel, two different arrangements of reinforced bars are analysed. Results are prepared for different stages of cracking for each arrangement of rebars. The parameters for both arrangements are then compared. The Finite Element Analysis (FEA) is carried out and changes in the properties like flexural strength, Elasticity and modal frequency are reported. The conclusions have been drawn by comparing the results.Keywords: cracks, elasticity, spalling, FEA
Procedia PDF Downloads 2809766 Finite Time Blow-Up and Global Solutions for a Semilinear Parabolic Equation with Linear Dynamical Boundary Conditions
Authors: Xu Runzhang, Yang Yanbing, Niu Yi, Zhang Mingyou, Liu Yu
Abstract:
For a class of semilinear parabolic equations with linear dynamical boundary conditions in a bounded domain, we obtain both global solutions and finite time blow-up solutions when the initial data varies in the phase space H1(Ω). Our main tools are the comparison principle, the potential well method and the concavity method. In particular, we discuss the behavior of the solutions with the initial data at critical and high energy level.Keywords: high energy level, critical energy level, linear dynamical boundary condition, semilinear parabolic equation
Procedia PDF Downloads 4379765 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field
Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova
Abstract:
One- and two-dimensional carbon nano structures with sp2 hybridization of carbon atoms (single walled carbon nano tubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper, we present a comparative study of graphene and single-wall carbon nano tubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nano structures induced by a strong magnetic field.Keywords: carbon nano structures, magnetic field, raman spectroscopy, spectro-microscopy
Procedia PDF Downloads 2729764 Intensification of Heat Transfer in Magnetically Assisted Reactor
Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy
Abstract:
The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile
Procedia PDF Downloads 1969763 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique
Authors: N. Guo, C. Xu, Z. C. Yang
Abstract:
In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search
Procedia PDF Downloads 1619762 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model
Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee
Abstract:
We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots
Procedia PDF Downloads 1859761 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design
Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu
Abstract:
In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode (SBD), high breakdown voltage, Baliga’s figure-of-merit, field plate
Procedia PDF Downloads 306