Search results for: out of plane loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2259

Search results for: out of plane loading

1689 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads

Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari

Abstract:

A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.

Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition

Procedia PDF Downloads 265
1688 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs

Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard

Abstract:

Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.

Keywords: 2D FPPA, hop tests, isokinetic testing, LSI

Procedia PDF Downloads 67
1687 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 566
1686 Fatigue Strength of S275 Mild Steel under Cyclic Loading

Authors: T. Aldeeb, M. Abduelmula

Abstract:

This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.

Keywords: fatigue strength, fatigue life, finite element analysis(FEA), S275 mild steel, scanning electron microscope (SEM)

Procedia PDF Downloads 160
1685 Correlation between Cephalometric Measurements and Visual Perception of Facial Profile in Skeletal Type II Patients

Authors: Choki, Supatchai Boonpratham, Suwannee Luppanapornlarp

Abstract:

The objective of this study was to find a correlation between cephalometric measurements and visual perception of facial profile in skeletal type II patients. In this study, 250 lateral cephalograms of female patients from age, 20 to 22 years were analyzed. The profile outlines of all the samples were hand traced and transformed into silhouettes by the principal investigator. Profile ratings were done by 9 orthodontists on Visual Analogue Scale from score one to ten (increasing level of convexity). 37 hard issue and soft tissue cephalometric measurements were analyzed by the principal investigator. All the measurements were repeated after 2 weeks interval for error assessment. At last, the rankings of visual perceptions were correlated with cephalometric measurements using Spearman correlation coefficient (P < 0.05). The results show that the increase in facial convexity was correlated with higher values of ANB (A point, nasion and B point), AF-BF (distance from A point to B point in mm), L1-NB (distance from lower incisor to NB line in mm), anterior maxillary alveolar height, posterior maxillary alveolar height, overjet, H angle hard tissue, H angle soft tissue and lower lip to E plane (absolute correlation values from 0.277 to 0.711). In contrast, the increase in facial convexity was correlated with lower values of Pg. to N perpendicular and Pg. to NB (mm) (absolute correlation value -0.302 and -0.294 respectively). From the soft tissue measurements, H angles had a higher correlation with visual perception than facial contour angle, nasolabial angle, and lower lip to E plane. In conclusion, the findings of this study indicated that the correlation of cephalometric measurements with visual perception was less than expected. Only 29% of cephalometric measurements had a significant correlation with visual perception. Therefore, diagnosis based solely on cephalometric analysis can result in failure to meet the patient’s esthetic expectation.

Keywords: cephalometric measurements, facial profile, skeletal type II, visual perception

Procedia PDF Downloads 138
1684 Quasi-Static Analysis of End Plate Beam-to-Column Connections

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones

Abstract:

This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.

Keywords: quasi-static, end plate, finite elements, connections

Procedia PDF Downloads 307
1683 Enthalpies of Formation of Equiatomic Binary Hafnium Transition Metal Compounds HfM (M=Co, Ir, Os, Pt, Rh, Ru)

Authors: Hadda Krarcha, S. Messaasdi

Abstract:

In order to investigate Hafnium transition metal alloys HfM (M= Co, Ir, Os,Pt, Rh, Ru) phase diagrams in the region of 50/50% atomic ratio, we performed ab initio Full-Potential Linearized Augmented Plane Waves calculations of the enthalpies of formation of HfM compounds at B2 (CsCl) structure type. The obtained enthalpies of formation are discussed and compared to some of the existing models and available experimental data.

Keywords: enthalpy of formation, transition metal, binarry compunds, hafnium

Procedia PDF Downloads 482
1682 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 451
1681 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 293
1680 Finite Element Modelling for the Development of a Planar Ultrasonic Dental Scaler for Prophylactic and Periodontal Care

Authors: Martin Hofmann, Diego Stutzer, Thomas Niederhauser, Juergen Burger

Abstract:

Dental biofilm is the main etiologic factor for caries, periodontal and peri-implant infections. In addition to the risk of tooth loss, periodontitis is also associated with an increased risk of systemic diseases such as atherosclerotic cardiovascular disease and diabetes. For this reason, dental hygienists use ultrasonic scalers for prophylactic and periodontal care of the teeth. However, the current instruments are limited to their dimensions and operating frequencies. The innovative design of a planar ultrasonic transducer introduces a new type of dental scalers. The flat titanium-based design allows the mass to be significantly reduced compared to a conventional screw-mounted Langevin transducer, resulting in a more efficient and controllable scaler. For the development of the novel device, multi-physics finite element analysis was used to simulate and optimise various design concepts. This process was supported by prototyping and electromechanical characterisation. The feasibility and potential of a planar ultrasonic transducer have already been confirmed by our current prototypes, which achieve higher performance compared to commercial devices. Operating at the desired resonance frequency of 28 kHz with a driving voltage of 40 Vrms results in an in-plane tip oscillation with a displacement amplitude of up to 75 μm by having less than 8 % out-of-plane movement and an energy transformation factor of 1.07 μm/mA. In a further step, we will adapt the design to two additional resonance frequencies (20 and 40 kHz) to obtain information about the most suitable mode of operation. In addition to the already integrated characterization methods, we will evaluate the clinical efficiency of the different devices in an in vitro setup with an artificial biofilm pocket model.

Keywords: ultrasonic instrumentation, ultrasonic scaling, piezoelectric transducer, finite element simulation, dental biofilm, dental calculus

Procedia PDF Downloads 124
1679 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 464
1678 A Novel Algorithm for Production Scheduling

Authors: Ali Mohammadi Bolban Abad, Fariborz Ahmadi

Abstract:

Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, NP-Hard problems, production scheduling

Procedia PDF Downloads 380
1677 Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology

Authors: Florencio D. De Los Reyes, Magdaleno R. Vasquez Jr., Mark Daniel G. De Luna, Peerasak Paoprasert

Abstract:

The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms.

Keywords: flame retardancy, polystyrene, response surface methodology, rice husk, silica nanoparticle

Procedia PDF Downloads 285
1676 Solar Energy for Decontamination of Ricinus communis

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The solar energy was used as a source of heating in Ricinus communis pie with the objective of eliminating or minimizing the percentage of the poison in it, so that it can be used as animal feed. A solar cylinder and plane collector were used as heating system. In the focal area of the solar concentrator a gutter support endowed with stove effect was placed. Parameters that denote the efficiency of the systems for the proposed objective was analyzed.

Keywords: solar energy, concentrate, Ricinus communis, temperature

Procedia PDF Downloads 427
1675 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 176
1674 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 108
1673 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature

Authors: Smriti, Ajeet Kumar

Abstract:

We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.

Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling

Procedia PDF Downloads 126
1672 The Microstructure of Aging ZnO, AZO, and GZO Films

Authors: Zue Chin Chang, Shih-Chang Liang

Abstract:

RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The electric conduction mechanism of the AZO and GZO films came mainly from the Al and Ga, the oxygen vacancies, Zn interstitial atoms, and Al and/or Ga interstitial atoms. AZO and GZO films achieved higher conduction than did ZnO film, it being ion vacant and nonstoichiometric. The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films.

Keywords: ZnO, AZO, GZO, doped, sputtering

Procedia PDF Downloads 397
1671 Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost

Authors: Muhammad Ganda Wiratama

Abstract:

XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized.

Keywords: loading activity, container loading, palletize product, simulation

Procedia PDF Downloads 299
1670 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded

Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin

Abstract:

The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.

Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension

Procedia PDF Downloads 262
1669 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 109
1668 Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor

Authors: Weerinda Appamana, Jirapong Keawkoon, Yamonporn Pacthong, Jirathiti Chitsanguansuk, Yanyong Sookklay

Abstract:

In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production.

Keywords: spinning disc reactor, biodiesel, process intensification, yield efficiency

Procedia PDF Downloads 157
1667 Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 240
1666 Curvature Based-Methods for Automatic Coarse and Fine Registration in Dimensional Metrology

Authors: Rindra Rantoson, Hichem Nouira, Nabil Anwer, Charyar Mehdi-Souzani

Abstract:

Multiple measurements by means of various data acquisition systems are generally required to measure the shape of freeform workpieces for accuracy, reliability and holisticity. The obtained data are aligned and fused into a common coordinate system within a registration technique involving coarse and fine registrations. Standardized iterative methods have been established for fine registration such as Iterative Closest Points (ICP) and its variants. For coarse registration, no conventional method has been adopted yet despite a significant number of techniques which have been developed in the literature to supply an automatic rough matching between data sets. Two main issues are addressed in this paper: the coarse registration and the fine registration. For coarse registration, two novel automated methods based on the exploitation of discrete curvatures are presented: an enhanced Hough Transformation (HT) and an improved Ransac Transformation. The use of curvature features in both methods aims to reduce computational cost. For fine registration, a new variant of ICP method is proposed in order to reduce registration error using curvature parameters. A specific distance considering the curvature similarity has been combined with Euclidean distance to define the distance criterion used for correspondences searching. Additionally, the objective function has been improved by combining the point-to-point (P-P) minimization and the point-to-plane (P-Pl) minimization with automatic weights. These ones are determined from the preliminary calculated curvature features at each point of the workpiece surface. The algorithms are applied on simulated and real data performed by a computer tomography (CT) system. The obtained results reveal the benefit of the proposed novel curvature-based registration methods.

Keywords: discrete curvature, RANSAC transformation, hough transformation, coarse registration, ICP variant, point-to-point and point-to-plane minimization combination, computer tomography

Procedia PDF Downloads 424
1665 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, Infill wall, Infilled frame, masonry wall

Procedia PDF Downloads 77
1664 What 4th-Year Primary-School Students are Thinking: A Paper Airplane Problem

Authors: Neslihan Şahin Çelik, Ali Eraslan

Abstract:

In recent years, mathematics educators have frequently stressed the necessity of instructing students about models and modeling approaches that encompass cognitive and metacognitive thought processes, starting from the first years of school and continuing on through the years of higher education. The purpose of this study is to examine the thought processes of 4th-grade primary school students in their modeling activities and to explore the difficulties encountered in these processes, if any. The study, of qualitative design, was conducted in the 2015-2016 academic year at a public state-school located in a central city in the Black Sea Region of Turkey. A preliminary study was first implemented with designated 4th grade students, after which the criterion sampling method was used to select three students that would be recruited into the focus group. The focus group that was thus formed was asked to work on the model eliciting activity of the Paper Airplane Problem and the entire process was recorded on video. The Paper Airplane Problem required the students to determine the winner with respect to: (a) the plane that stays in the air for the longest time; (b) the plane that travels the greatest distance in a straight-line path; and (c) the overall winner for the contest. A written transcript was made of the video recording, after which the recording and the students' worksheets were analyzed using the Blum and Ferri modeling cycle. The results of the study revealed that the students tested the hypotheses related to daily life that they had set up, generated ideas of their own, verified their models by making connections with real life, and tried to make their models generalizable. On the other hand, the students had some difficulties in terms of their interpretation of the table of data and their ways of operating on the data during the modeling processes.

Keywords: primary school students, model eliciting activity, mathematical modeling, modeling process, paper airplane problem

Procedia PDF Downloads 360
1663 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films

Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu

Abstract:

Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.

Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain

Procedia PDF Downloads 153
1662 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 163
1661 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant

Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi

Abstract:

To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.

Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia

Procedia PDF Downloads 299
1660 Behaviour of Laterally Loaded Pile Groups in Cohesionless Soil

Authors: V. K. Arora, Suraj Prakash

Abstract:

Pile foundations are provided to transfer the vertical and horizontal loads of superstructures like high rise buildings, bridges, offshore structures etc. to the deep strata in the soil. These vertical and horizontal loads are due to the loads coming from the superstructure and wind, water thrust, earthquake, and earth pressure, respectively. In a pile foundation, piles are used in groups. Vertical piles in a group of piles are more efficient to take vertical loads as compared to horizontal loads and when the horizontal load per pile exceeds the bearing capacity of the vertical piles in that case batter piles are used with vertical piles because batter piles can take more lateral loads than vertical piles. In this paper, a model study was conducted on three vertical pile group with single positive and negative battered pile subjected to lateral loads. The batter angle for battered piles was ±35◦ with the vertical axis. Piles were spaced at 2.5d (d=diameter of pile) to each other. The soil used for model test was cohesionless soil. Lateral loads were applied in three stages on all the pile groups individually and it was found that under the repeated action of lateral loading, the deflection of the piles increased under the same loading. After comparing the results, it was found that the pile group with positive batter pile fails at 28 kgf and the pile group with negative batter pile fails at 24 kgf so it shows that positive battered piles are stronger than the negative battered piles.

Keywords: vertical piles, positive battered piles, negative battered piles, cohesionless soil, lateral loads, model test

Procedia PDF Downloads 405