Search results for: mixed-integer non-linear programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2155

Search results for: mixed-integer non-linear programming

1585 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields

Authors: John Knight, Fuchun Li, Yan Xu

Abstract:

Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.

Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function

Procedia PDF Downloads 346
1584 A Study of Flow near the Leading Edge of a Flat Plate by New Idea in Analytical Methods

Authors: M. R. Akbari, S. Akbari, L. Abdollahpour

Abstract:

The present paper is concerned with calculating the 2-dimensional velocity profile of a viscous flow for an incompressible fluid along the leading edge of a flat plate by using the continuity and motion equations with a simple and innovative approach. A Comparison between Numerical method and AGM has been made and the results have been revealed that AGM is very accurate and easy and can be applied for a wide variety of nonlinear problems. It is notable that most of the differential equations can be solved in this approach which in the other approaches they do not have this capability. Moreover, there are some valuable benefits in this method of solving differential equations, for instance: Without any dimensionless procedure, we can solve many differential equation(s), that is, differential equations are directly solvable by this method. In addition, it is not necessary to convert variables into new ones. According to the afore-mentioned expressions which will be proved in this literature, the process of solving nonlinear differential equation(s) will be very simple and convenient in contrast to the other approaches.

Keywords: leading edge, new idea, flat plate, incompressible fluid

Procedia PDF Downloads 268
1583 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters

Authors: G. Krishna Mohana Rao, P. Ravi Kumar

Abstract:

Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.

Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers

Procedia PDF Downloads 503
1582 Machine Learning Based Gender Identification of Authors of Entry Programs

Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee

Abstract:

Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.

Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning

Procedia PDF Downloads 297
1581 Seismic Response of Moment Resisting Steel Frame with Hysteresis Envelope Model of Joints

Authors: Krolo Paulina

Abstract:

The seismic response of moment-resisting steel frames depends on the behavior of the joints, especially when they are considered as ductile zones. The aim of this research is to provide a realistic assessment of the moment-resisting steel frame behavior under seismic loading using nonlinear static pushover analysis (N2 method). The hysteresis behavior of the joints in the frame model was described using a new hysteresis envelope model. The obtained seismic response was compared with the results of the seismic analysis obtained for the same steel frame that takes into account the monotonic model of the joints.

Keywords: beam-to-column joints, hysteresis envelope model, moment-resisting frame, nonlinear static pushover analysis, N2 method

Procedia PDF Downloads 250
1580 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study

Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu

Abstract:

Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.

Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score

Procedia PDF Downloads 443
1579 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 260
1578 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.

Keywords: beams, local buckling, slender, stiffener, thin walled section

Procedia PDF Downloads 263
1577 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 212
1576 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation

Authors: Yaping Zhao

Abstract:

In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.

Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density

Procedia PDF Downloads 476
1575 Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures

Authors: Diyar Yousif Ali

Abstract:

Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame.

Keywords: reinforced concrete structures, pushover analysis, base shear, steel bracing

Procedia PDF Downloads 72
1574 A 0-1 Goal Programming Approach to Optimize the Layout of Hospital Units: A Case Study in an Emergency Department in Seoul

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

This paper proposes a method to optimize the layout of an emergency department (ED) based on real executions of care processes by considering several planning objectives simultaneously. Recently, demand for healthcare services has been dramatically increased. As the demand for healthcare services increases, so do the need for new healthcare buildings as well as the need for redesign and renovating existing ones. The importance of implementation of a standard set of engineering facilities planning and design techniques has been already proved in both manufacturing and service industry with many significant functional efficiencies. However, high complexity of care processes remains a major challenge to apply these methods in healthcare environments. Process mining techniques applied in this study to tackle the problem of complexity and to enhance care process analysis. Process related information such as clinical pathways extracted from the information system of an ED. A 0-1 goal programming approach is then proposed to find a single layout that simultaneously satisfies several goals. The proposed model solved by optimization software CPLEX 12. The solution reached using the proposed method has 42.2% improvement in terms of walking distance of normal patients and 47.6% improvement in walking distance of critical patients at minimum cost of relocation. It has been observed that lots of patients must unnecessarily walk long distances during their visit to the emergency department because of an inefficient design. A carefully designed layout can significantly decrease patient walking distance and related complications.

Keywords: healthcare operation management, goal programming, facility layout problem, process mining, clinical processes

Procedia PDF Downloads 267
1573 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry

Authors: Mukhtiar Singh, Sumeet Nagar

Abstract:

Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.

Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem

Procedia PDF Downloads 374
1572 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise

Procedia PDF Downloads 469
1571 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.

Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing

Procedia PDF Downloads 300
1570 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 536
1569 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 274
1568 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 215
1567 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem

Authors: Ebrahim Asadi-Gangraj

Abstract:

Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.

Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan

Procedia PDF Downloads 159
1566 Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model

Authors: Ameen Alawneh

Abstract:

The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming.

Keywords: Supply chain, Mixed Integer linear programming, heavy industry, water pollution

Procedia PDF Downloads 426
1565 Modeling User Context Using CEAR Diagram

Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .

Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability

Procedia PDF Downloads 319
1564 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation

Authors: Md. S. Ansari, S. S. Motsa

Abstract:

In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.

Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation

Procedia PDF Downloads 353
1563 The Formation of Mutual Understanding in Conversation: An Embodied Approach

Authors: Haruo Okabayashi

Abstract:

The mutual understanding in conversation is very important for human relations. This study investigates the mental function of the formation of mutual understanding between two people in conversation using the embodied approach. Forty people participated in this study. They are divided into pairs randomly. Four conversation situations between two (make/listen to fun or pleasant talk, make/listen to regrettable talk) are set for four minutes each, and the finger plethysmogram (200 Hz) of each participant is measured. As a result, the attractors of the participants who reported “I did not understand my partner” show the collapsed shape, which means the fluctuation of their rhythm is too small to match their partner’s rhythm, and their cross correlation is low. The autonomic balance of both persons tends to resonate during conversation, and both LLEs tend to resonate, too. In human history, in order for human beings as weak mammals to live, they may have been with others; that is, they have brought about resonating characteristics, which is called self-organization. However, the resonant feature sometimes collapses, depending on the lifestyle that the person was formed by himself after birth. It is difficult for people who do not have a lifestyle of mutual gaze to resonate their biological signal waves with others’. These people have features such as anxiety, fatigue, and confusion tendency. Mutual understanding is thought to be formed as a result of cooperation between the features of self-organization of the persons who are talking and the lifestyle indicated by mutual gaze. Such an entanglement phenomenon is called a nonlinear relation. By this research, it is found that the formation of mutual understanding is expressed by the rhythm of a biological signal showing a nonlinear relationship.

Keywords: embodied approach, finger plethysmogram, mutual understanding, nonlinear phenomenon

Procedia PDF Downloads 239
1562 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 185
1561 Application of the MOOD Technique to the Steady-State Euler Equations

Authors: Gaspar J. Machado, Stéphane Clain, Raphael Loubère

Abstract:

The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part.

Keywords: Euler equations, finite volume, MOOD, steady-state

Procedia PDF Downloads 250
1560 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation

Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes

Abstract:

The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.

Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization

Procedia PDF Downloads 290
1559 Finite Element Analysis of the Ordinary Reinforced Concrete Bridge Piers

Authors: Nabin Raj Chaulagain

Abstract:

Most of the concrete bridges in Nepal constructed during 90's and before are made up of low strength ordinary concrete which might be one of the reasons for damage in higher magnitude earthquake. Those bridges were designed by the outdated bridge codes which might not account the large seismic loads. This research investigates the seismic vulnerability of the existing single column ordinary concrete bridge pier by finite element modeling, using the software Seismostruct. The existing bridge pier capacity has been assessed using nonlinear pushover analysis and performance is compared after retrofitting those pier models with CFRP. Furthermore, the seismic evaluation was made by conducting cyclic loading test at different drift percentage. The performance analysis of bridge pier by nonlinear pushover analysis is further validated by energy dissipation phenomenon measured from the hysteric loop for each model of ordinary concrete piers.

Keywords: finite element modeling, ordinary concrete bridge pier, performance analysis, retrofitting

Procedia PDF Downloads 297
1558 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 236
1557 Integrated Vegetable Production Planning Considering Crop Rotation Rules Using a Mathematical Mixed Integer Programming Model

Authors: Mohammadali Abedini Sanigy, Jiangang Fei

Abstract:

In this paper, a mathematical optimization model was developed to maximize the profit in a vegetable production planning problem. It serves as a decision support system that assists farmers in land allocation to crops and harvest scheduling decisions. The developed model can handle different rotation rules in two consecutive cycles of production, which is a common practice in organic production system. Moreover, different production methods of the same crop were considered in the model formulation. The main strength of the model is that it is not restricted to predetermined production periods, which makes the planning more flexible. The model is classified as a mixed integer programming (MIP) model and formulated in PYOMO -a Python package to formulate optimization models- and solved via Gurobi and CPLEX optimizer packages. The model was tested with secondary data from 'Australian vegetable growing farms', and the results were obtained and discussed with the computational test runs. The results show that the model can successfully provide reliable solutions for real size problems.

Keywords: crop rotation, harvesting, mathematical model formulation, vegetable production

Procedia PDF Downloads 163
1556 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses

Authors: Walid Tawfik

Abstract:

The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.

Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband

Procedia PDF Downloads 203