Search results for: customer friendly washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5520

Search results for: customer friendly washing machine

4950 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 78
4949 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm

Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang

Abstract:

In this paper, a performance of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminary study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.

Keywords: stealth laser dicing process, meandering, meta-heuristics, shuffled frog leaping algorithm

Procedia PDF Downloads 341
4948 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 113
4947 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution

Authors: Ulrike Dowie, Ralph Grothmann

Abstract:

Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.

Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management

Procedia PDF Downloads 194
4946 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 209
4945 Organic Substance Removal from Pla-Som Family Industrial Wastewater through APCW System

Authors: W. Wararam, K. Angchanpen, T. Pattamapitoon, K. Chunkao, O. Phewnil, M. Srichomphu, T. Jinjaruk

Abstract:

The research focused on the efficiency for treating high organic wastewater from pla-som production process by anaerobic tanks, oxidation ponds and constructed wetland treatment systems (APCW). The combined system consisted of 50-mm plastic screen, five 5.8 m3 oil-grease trap tanks (2-day hydraulic retention time; HRT), four 4.3 m3 anaerobic tanks (1-day HRT), 16.7 m3 oxidation pond no.1 (7-day HRT), 12.0 m3 oxidation pond no.2 (3-day HRT), and 8.2 m3 constructed wetland plot (1-day HRT). After washing fresh raw fishes, they were sliced in small pieces and were converted into ground fish meat by blender machine. The fish meat was rinsed for 8 rounds: 1, 2, 3, 5, 6 and 7 by tap water and 4 and 8 by rice-wash-water, before mixing with salt, garlic, steamed rice and monosodium glutamate, followed by plastic wrapping for 72-hour of edibility. During pla-som production processing, the rinsed wastewater about 5 m3/day was fed to the treatment systems and fully stagnating storage in its components. The result found that, 1) percentage of treatment efficiency for BOD, COD, TDS and SS were 93, 95, 32 and 98 respectively, 2) the treatment was conducted with 500-kg raw fishes along with full equipment of high organic wastewater treatment systems, 3) the trend of the treatment efficiency and quantity in all indicators was similarly processed and 4) the small pieces of fish meat and fish blood were needed more than 3-day HRT in anaerobic digestion process.

Keywords: organic substance, Pla-Som family industry, wastewater, APCW system

Procedia PDF Downloads 358
4944 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service

Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong

Abstract:

Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.

Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation

Procedia PDF Downloads 334
4943 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 87
4942 Key Success Factors of Customer Relationship Management: An Empirical Study of Tunisian Firms

Authors: Khlif Hamadi

Abstract:

Customer Relationship Management has become the main interest of researchers and practitioners especially in the domains of Management and Information Systems (IS). This paper is an overview of success factors that could facilitate successful adoption of CRM. There are 2 factors: the organizational climate and the capacity for innovation. The survey was developed with 200 CRM users. Empirical research is in the positivist paradigm based on the hypothetico-deductive method. Indeed, the approach adopted is the quantitative approach based on a questionnaire complied by Tunisian companies operating in different sectors of activity. For the data analyses, the structural equations method was used to conduct our exploratory and confirmatory analysis. The results revealed that the creative organizational climate and high innovation capacity positively influence the success of CRM practice.

Keywords: CRM practices, innovation capacity, organizational climate, the structural equation

Procedia PDF Downloads 117
4941 Early Installation Effect on the Machines’ Generated Vibration

Authors: Maitham Al-Safwani

Abstract:

Motor vibration issues were analyzed by several studies. It is generally accepted that vibration issues result from poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump the vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plates that drastically reduced the vibration. In this study, vibration data was recorded for several similar motors run at the same and different speeds. The vibration values were recorded -for two and a half hours- and the vibration readings were analyzed to determine when the readings became consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.

Keywords: vibration, noise, installation, machine

Procedia PDF Downloads 184
4940 Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development

Authors: Dyah Titisari Widyastuti

Abstract:

Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination.

Keywords: accessibility of daily mobility, pedestrian-friendly district, rail-station district, transit oriented development

Procedia PDF Downloads 233
4939 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 276
4938 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 107
4937 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
4936 Growth of New Media Advertising

Authors: Palwinder Bhatia

Abstract:

As all know new media is a broad term in media studies that emerged in the latter part of the 20th century which refers to on-demand access to content any time, anywhere, on any digital device, as well as interactive user feedback, creative participation and community formation around the media content. The role of new media in advertisement is impeccable these days. It becomes the cheap and best way of advertising. Another important promise of new media is the democratization of the creation, publishing, distribution and consumption of media content. New media brings a revolution in about every field. It makes bridge between customer and companies. World make a global village with the only help of new media. Advertising helps in shaping the consumer behavior and effect on consumer psychology, sociology, social anthropology and economics. People do comments and like the particular brands on the networking sites which create mesmerism impact on the behavior of customer. Recent study did by Times of India shows that 64% of Facebook users have liked a brand on Facebook.

Keywords: film, visual, culture, media, advertisement

Procedia PDF Downloads 284
4935 Measuring the Impact of Brand Satisfaction, Brand Trust and Brand Experience on Brand Loyalty: An Empirical Study on the Skincare Products in Pakistan

Authors: Muhammad Azeem Qureshi, Hammad Tahir, Fawwad Mahmood Butt

Abstract:

Purpose: This study examines empirically the effect of brand satisfaction, brand trust and brand experience on brand loyalty which can be helpful to retain and increase customer base and satisfying customer needs as well. Methodology: Data has been collected on convenient sampling method and cause and effect among variables has been measured by applying regression analysis technique. Findings: Finding of this study have supported the proposed hypotheses and results show that brand loyalty is significantly explained by brand satisfaction, brand trust and brand experience. Practical Implications: The outcome of this study provides a useful framework and importance of brand loyalty culture in Pakistan. Marketers can be benefited trough the findings of this study.

Keywords: brand experience, brand satisfaction, brand trust, brand loyalty, hair-care products

Procedia PDF Downloads 328
4934 Performance Evaluation of Production Schedules Based on Process Mining

Authors: Kwan Hee Han

Abstract:

External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.

Keywords: data mining, event log, process mining, production scheduling

Procedia PDF Downloads 280
4933 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group

Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb

Abstract:

Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.

Keywords: broadband services, customer experience quality, loyalty, net promoters score

Procedia PDF Downloads 267
4932 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 114
4931 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
4930 Chatbots and the Future of Globalization: Implications of Businesses and Consumers

Authors: Shoury Gupta

Abstract:

Chatbots are a rapidly growing technological trend that has revolutionized the way businesses interact with their customers. With the advancements in artificial intelligence, chatbots can now mimic human-like conversations and provide instant and efficient responses to customer inquiries. In this research paper, we aim to explore the implications of chatbots on the future of globalization for both businesses and consumers. The paper begins by providing an overview of the current state of chatbots in the global market and their growth potential in the future. The focus is on how chatbots have become a valuable tool for businesses looking to expand their global reach, especially in areas with high population density and language barriers. With chatbots, businesses can engage with customers in different languages and provide 24/7 customer service support, creating a more accessible and convenient customer experience. The paper then examines the impact of chatbots on cross-cultural communication and how they can help bridge communication gaps between businesses and consumers from different cultural backgrounds. Chatbots can potentially facilitate cross-cultural communication by offering real-time translations, voice recognition, and other innovative features that can help users communicate effectively across different languages and cultures. By providing more accessible and inclusive communication channels, chatbots can help businesses reach new markets and expand their customer base, making them more competitive in the global market. However, the paper also acknowledges that there are potential drawbacks associated with chatbots. For instance, chatbots may not be able to address complex customer inquiries that require human input. Additionally, chatbots may perpetuate biases if they are programmed with certain stereotypes or assumptions about different cultures. These drawbacks may have significant implications for businesses and consumers alike. To explore the implications of chatbots on the future of globalization in greater detail, the paper provides a thorough review of existing literature and case studies. The review covers topics such as the benefits of chatbots for businesses and consumers, the potential drawbacks of chatbots, and how businesses can mitigate any risks associated with chatbot use. The paper also discusses the ethical considerations associated with chatbot use, such as privacy concerns and the need to ensure that chatbots do not discriminate against certain groups of people. The ethical implications of chatbots are particularly important given the potential for chatbots to be used in sensitive areas such as healthcare and financial services. Overall, this research paper provides a comprehensive analysis of chatbots and their implications for the future of globalization. By exploring both the potential benefits and drawbacks of chatbot use, the paper aims to provide insights into how businesses and consumers can leverage this technology to achieve greater global reach and improve cross-cultural communication. Ultimately, the paper concludes that chatbots have the potential to be a powerful tool for businesses looking to expand their global footprint and improve their customer experience, but that care must be taken to mitigate any risks associated with their use.

Keywords: chatbots, conversational AI, globalization, businesses

Procedia PDF Downloads 98
4929 A Study of Agile Based Approaches to Improve Software Quality

Authors: Gurmeet Kaur

Abstract:

Agile software development methods are being recognized as popular, and efficient approach to the development of software system that has a short delivery period with high quality also that meets customer requirements with zero defect. In agile software development, quality means quality of code where in the quality is maintained through the use of methods or approaches like refactoring, test driven development, behavior driven development, acceptance test driven development, and demand driven development. Software quality is measured in term of metrics such as the number of defects during development of software. Usage of above mentioned methods or approaches, reduces the possibilities of defects in developed software, and hence improve quality. This paper focuses on study of agile based quality methods or approaches for software development that ensures improved quality of software as well as reduced cost, and customer satisfaction.

Keywords: ATDD, BDD, DDD, TDD

Procedia PDF Downloads 174
4928 Enhancing ERP Implementation Processes in South African Retail SMEs: A Study on Operational Efficiency and Customer-Centric Approaches

Authors: Tshepo Mabotja

Abstract:

Purpose: The purpose of this study is to identify and analyse the factors influencing ERP implementation in South African SMEs in the textile & apparel retail sector, with the goal of providing insights that improve decision-making, enhance operational efficiency, and meet customer expectations. Design/Methodology/Approach: A quantitative research methodology was employed, utilising a probability (random) sampling technique to ensure equal opportunity for sample selection. The researcher conducted an extensive review of current literature to identify knowledge gaps and applied data analysis methods, including descriptive statistics, reliability tests, exploratory factor analysis, and normality testing. Findings/Results: The study revealed that South African SMEs in the textile & apparel retail industry must evaluate critical factors before implementing an ERP model. These factors include assessing client requirements, examining the experiences of existing ERP system users, understanding system maintenance needs, and forecasting expected performance outcomes. Practical Implications: The findings provide actionable recommendations for textile and apparel retail SMEs aiming to adopt ERP systems. By focusing on the identified critical factors, businesses can enhance their ERP adoption processes, reduce operational inefficiencies, and better align with customer and sustainability demands. Originality/Value: This study contributes to the limited body of knowledge on ERP implementation challenges in South African textile and apparel retail SMEs. It provides a unique perspective on how strategic ERP adoption can drive operational improvements and support sustainable development practices within the industry.

Keywords: retail SMEs, enterprise resource planning, operational efficiency, customer centricity

Procedia PDF Downloads 13
4927 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 101
4926 Gender and Work-Family Conflict Gaps in Hong Kong: The Impact of Family-Friendly Policies

Authors: Lina Vyas

Abstract:

Gender gap, unfortunately, is still prevalent in the workplace around the world. In most countries, women are less likely than men to participate in the workplace. They earn considerably less than men for doing the same work and are generally expected to prioritize family obligations over work responsibilities. Women often face more conflicts while balancing the increasingly normalized roles of both worker and mother. True gender equality in the workplace is still a long way off. In Hong Kong, no less is this true. Despite the fact that female students are outnumbered by males at universities, only 55% of women are active participants in the labour market, and for those in the workforce, the gender pay gap is 22%. This structural inequality also exacerbates the issues of confronting biases at work for choosing to be employed as a mother, as well as reinforces the societal expectation of women to be the primary caregiver at home. These pressures are likely to add up for women and contribute to increased levels of work-life conflict, which may be a further barrier for the inclusion of women into the workplace. Family-friendly policies have long been thought to be an alleviator of work-life conflict through helping employees balance the demands in both work and family. Particularly, for women, this could be a facilitator of their integration into the workplace. However, little research has looked at how family-friendly policies may also have a gender differential in effect, as opposed to traditional notions of having universal efficacy. This study investigates both how and how much the gender dimension impacts work-family conflict. In addition to disentangling the reasons for gender gaps existing in work-life conflict for women, this study highlights what can be done at an organizational level to alleviate these conflicts. Most importantly, the policies recommendations derived from this study serve as an avenue for more active participation for women in the workplace and can be considered as a pathway for promoting greater gender egalitarianism and fairness in a traditionally gender-segregated society.

Keywords: family-friendly policies, Hong Kong, work-family conflict, workplace

Procedia PDF Downloads 178
4925 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 298
4924 Features Valuation of Intellectual Capital in the Organization

Authors: H. M. Avanesyan

Abstract:

Economists have been discussing the importance of intangible assets for the success of organization for many years. The term intellectual capital was popularized in the 1990s by Thomas Stewart. “Intellectual capital is the knowledge, applied experience, enterprise processes and technology customer relationship and professional skills which are valuable assets to an organization.” Human capital – includes employee brainpower, competence, skills, experience and knowledge. Customer capital – includes relations and networks with partners, suppliers, distributors, and customers. The objective of the article is to assess one of the key components of organizational culture – organizational values. The focus of the survey was on assessing how intellectual capital presented in these values of the organization. In the conclusion section the article refers to underestimation of intellectual capital by the organization management and the various possible negative effects of the latter.

Keywords: human capital, intellectual capital, organizational culture, management, social identity, organization

Procedia PDF Downloads 468
4923 Smart Safari: Safari Guidance Mobile Application

Authors: D. P. Lawrence, T. M. M. D. Ariyarathna, W. N. K. De Silva, M. D. S. C. De Silva, Lasantha Abeysiri, Pradeep Abeygunawardhna

Abstract:

Safari traveling is one of the most famous hobbies all over the world. In Sri Lanka, 'Yala' is the second-largest national park, which is a better place to go for a safari. Many number of local and foreign travelers are coming to go for a safari in 'Yala'. But 'Yala' does not have a mobile application that is made to facilitate the traveler with some important features that the traveler wants to achieve in the safari experience. To overcome these difficulties, the proposed mobile application by adding those identified features to make travelers, guiders, and administration's works easier. The proposed safari traveling guidance mobile application is called 'SMART SAFARI' for the 'Yala' National Park in Sri Lanka. There are four facilities in this mobile application that provide for travelers as well as the guiders. As the first facility, the guider and traveler can view the created map of the park, and the guider can add temporary locations of animals and special locations on the map. This is a Geographic Information System (GIS) to capture, analyze, and display geographical data. And as the second facility is to generate optimal paths according to the travelers' requirements through the park by using machine learning techniques. In the third part, the traveler can get information about animals using an animal identification system by capturing the animal. As in the other facility, the traveler will be facilitated to add reviews and a rate and view those comments under categorized sections and pre-defined score range. With those facilities, this user-friendly mobile application provides the user to get a better experience in safari traveling, and it will probably help to develop tourism culture in Sri Lanka.

Keywords: animal identification system, geographic information system, machine learning techniques, pre defined score range

Procedia PDF Downloads 134
4922 The Effectiveness of the Repositioning Campaign of PKO BP Brand on the Basis of Questionnaire Research

Authors: Danuta Szwajca

Abstract:

Image is a very important intangible asset of a contemporary enterprise, especially, in case of a bank as a public trust institution. A positive, demanded image may effectively distinguish the bank among the competition and build the customer confidence and loyalty. PKO BP is the biggest and largest bank functioning on the Polish financial market. Within the years not a very nice image of the bank has been embedded in the customers’ minds as an old-fashioned, stagnant, resistant to changes institution, what result in the customer loss, and ageing. For this reason, in 2010, the bank launched a campaign of radical image change along with a strategy of branches modernization and improvement of the product offer. The objective of the article is to make an attempt of effectiveness assessment of the brand repositioning campaign that lasted three years. The foundations of the assessment are the results of the questionnaire research concerning the way of bank’s perception before and after the campaign.

Keywords: advertising campaign, brand repositioning, image of the bank, repositioning

Procedia PDF Downloads 426
4921 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 128