Search results for: curve pipe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1427

Search results for: curve pipe

857 Analysis of the Performance of a Solar Water Heating System with Flat Collector

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.

Abstract:

The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.

Keywords: recycling materials, energy efficiency, solar collector, solar water heating system

Procedia PDF Downloads 593
856 Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors

Authors: Meiyan Gao, Zongmin Wang, Haibo Yang, Qiuhua Liang

Abstract:

Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment.

Keywords: urban flood resilience, resilience assessment, hydrodynamic model, resilience curve

Procedia PDF Downloads 37
855 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)

Authors: Ahmed E. Hodaib, Mohamed A. Hashem

Abstract:

In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.

Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization

Procedia PDF Downloads 251
854 Enhancement of Thermal Performance of Latent Heat Solar Storage System

Authors: Rishindra M. Sarviya, Ashish Agrawal

Abstract:

Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.

Keywords: latent heat, numerical study, phase change material, solar energy

Procedia PDF Downloads 305
853 Design and Assessment of Base Isolated Structures under Spectrum-Compatible Bidirectional Earthquakes

Authors: Marco Furinghetti, Alberto Pavese, Michele Rinaldi

Abstract:

Concave Surface Slider devices have been more and more used in real applications for seismic protection of both bridge and building structures. Several research activities have been carried out, in order to investigate the lateral response of such a typology of devices, and a reasonably high level of knowledge has been reached. If radial analysis is performed, the frictional force is always aligned with respect to the restoring force, whereas under bidirectional seismic events, a bi-axial interaction of the directions of motion occurs, due to the step-wise projection of the main frictional force, which is assumed to be aligned to the trajectory of the isolator. Nonetheless, if non-linear time history analyses have to be performed, standard codes provide precise rules for the definition of an averagely spectrum-compatible set of accelerograms in radial conditions, whereas for bidirectional motions different combinations of the single components spectra can be found. Moreover, nowadays software for the adjustment of natural accelerograms are available, which lead to a higher quality of spectrum-compatibility and to a smaller dispersion of results for radial motions. In this endeavor a simplified design procedure is defined, for building structures, base-isolated by means of Concave Surface Slider devices. Different case study structures have been analyzed. In a first stage, the capacity curve has been computed, by means of non-linear static analyses on the fixed-base structures: inelastic fiber elements have been adopted and different direction angles of lateral forces have been studied. Thanks to these results, a linear elastic Finite Element Model has been defined, characterized by the same global stiffness of the linear elastic branch of the non-linear capacity curve. Then, non-linear time history analyses have been performed on the base-isolated structures, by applying seven bidirectional seismic events. The spectrum-compatibility of bidirectional earthquakes has been studied, by considering different combinations of single components and adjusting single records: thanks to the proposed procedure, results have shown a small dispersion and a good agreement in comparison to the assumed design values.

Keywords: concave surface slider, spectrum-compatibility, bidirectional earthquake, base isolation

Procedia PDF Downloads 289
852 Prediction of Fire Growth of the Office by Real-Scale Fire Experiment

Authors: Kweon Oh-Sang, Kim Heung-Youl

Abstract:

Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ.

Keywords: fire growth, fire experiment, t2 curve, large scale calorimeter

Procedia PDF Downloads 331
851 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability

Authors: Ahmed Cherif Megri, HossamEldin ElSherif

Abstract:

In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.

Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization

Procedia PDF Downloads 66
850 Modelling and Simulation of Milk Fouling

Authors: Harche Rima, Laoufi Nadia Aicha

Abstract:

This work focuses on the study and modeling of the fouling phenomenon in a vertical pipe. In the first step, milk is one of the fluids obeying the phenomenon of fouling because of the denaturation of these proteins, especially lactoglobulin, which is the active element of milk, and to facilitate its use, we chose to study milk as a fouling fluid. In another step, we consider the test section of our installation as a tubular-type heat exchanger that works against the current and in a closed circuit. A simple mathematical model of Kern & Seaton, based on the kinetics of the fouling resistance, was used to evaluate the influence of the operating parameters (fluid flow velocity and exchange wall temperature) on the fouling resistance. The influence of the variation of the fouling resistance with the operating conditions on the efficiency of the heat exchanger and the importance of the dirty state exchange coefficient as an exchange quality control parameter were discussed and examined. On the other hand, an electronic scanning microscope analysis was performed on the milk deposit in order to obtain its actual image and composition, which allowed us to calculate the thickness of this deposit.

Keywords: fouling, milk, tubular heat exchanger, fouling resistance

Procedia PDF Downloads 42
849 Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Wassana Wichai

Abstract:

Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires.

Keywords: loading force, ternary alloy, NiTiCu, shape memory, orthodontic wire

Procedia PDF Downloads 280
848 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV

Authors: Osama Moustafa Zayed

Abstract:

Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.

Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate

Procedia PDF Downloads 291
847 Surgical Hip Dislocation of Femoroacetabular Impingement: Survivorship and Functional Outcomes at 10 Years

Authors: L. Hoade, O. O. Onafowokan, K. Anderson, G. E. Bartlett, E. D. Fern, M. R. Norton, R. G. Middleton

Abstract:

Aims: Femoroacetabular impingement (FAI) was first recognised as a potential driver for hip pain at the turn of the last millennium. While there is an increasing trend towards surgical management of FAI by arthroscopic means, open surgical hip dislocation and debridement (SHD) remains the Gold Standard of care in terms of reported outcome measures. (1) Long-term functional and survivorship outcomes of SHD as a treatment for FAI are yet to be sufficiently reported in the literature. This study sets out to help address this imbalance. Methods: We undertook a retrospective review of our institutional database for all patients who underwent SHD for FAI between January 2003 and December 2008. A total of 223 patients (241 hips) were identified and underwent a ten year review with a standardised radiograph and patient-reported outcome measures questionnaire. The primary outcome measure of interest was survivorship, defined as progression to total hip arthroplasty (THA). Negative predictive factors were analysed. Secondary outcome measures of interest were survivorship to further (non-arthroplasty) surgery, functional outcomes as reflected by patient reported outcome measure scores (PROMS) scores, and whether a learning curve could be identified. Results: The final cohort consisted of 131 females and 110 males, with a mean age of 34 years. There was an overall native hip joint survival rate of 85.4% at ten years. Those who underwent a THA were significantly older at initial surgery, had radiographic evidence of preoperative osteoarthritis and pre- and post-operative acetabular undercoverage. In those whom had not progressed to THA, the average Non-arthritic Hip Score and Oxford Hip Score at ten year follow-up were 72.3% and 36/48, respectively, and 84% still deemed their surgery worthwhile. A learning curve was found to exist that was predicated on case selection rather than surgical technique. Conclusion: This is only the second study to evaluate the long-term outcomes (beyond ten years) of SHD for FAI and the first outside the originating centre. Our results suggest that, with correct patient selection, this remains an operation with worthwhile outcomes at ten years. How the results of open surgery compared to those of arthroscopy remains to be answered. While these results precede the advent of collison software modelling tools, this data helps set a benchmark for future comparison of other techniques effectiveness at the ten year mark.

Keywords: femoroacetabular impingement, hip pain, surgical hip dislocation, hip debridement

Procedia PDF Downloads 79
846 Design of Impedance Box to Study Fluid Parameters

Authors: K. AlJimaz, A. Abdullah, A. Abdulsalam, K. Ebdah, A. Abdalrasheed

Abstract:

Understanding flow distribution and head losses is essential to design and calculate Thermo fluid parameters in order to reduce the pressure to a certain required pressure. This paper discusses the ways acquired in design and simulation to create and design an impedance box that reduces pressure. It's controlled by specific scientific principles such as Bernoulli’s principle and conservation of mass. In this paper, the design is made using SOLIDWORKS, and the simulation is done using ANSYS software to solve differential equations and study the parameters in the 3D model, also to understand how the design of this box reduced the pressure. The design was made so that fluid enters at a certain pressure of 3000 Pa in a single inlet; then, it exits from six outlets at a pressure of 300 Pa with respect to the conservation of mass principle. The effect of the distribution of flow and the head losses has been noticed that it has an impact on reducing the pressure since other factors, such as friction, were neglected and also the temperature, which was constant. The design showed that the increase in length and diameter of the pipe helped to reduce the pressure, and the head losses contributed significantly to reduce the pressure to 10% of the original pressure (from 3000 Pa to 300 Pa) at the outlets.

Keywords: box, pressure, thermodynamics, 3D

Procedia PDF Downloads 81
845 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals

Authors: C. C .D. Kulathilake, M. Jayatilake, T. Takahashi

Abstract:

The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.

Keywords: autoradiographs, fatty acid, radiopharmaceuticals, sugar

Procedia PDF Downloads 446
844 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper

Authors: A. F. Momin, D. V. Khakhar

Abstract:

Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.

Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers

Procedia PDF Downloads 83
843 Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)

Authors: Deepika Sharma, Bal Krishan

Abstract:

In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed.

Keywords: on-resistance, threshold voltage, epitaxial layer, breakdown voltage

Procedia PDF Downloads 323
842 Investigations of the Service Life of Different Material Configurations at Solid-lubricated Rolling Bearings

Authors: Bernd Sauer, Michel Werner, Stefan Emrich, Michael Kopnarski, Oliver Koch

Abstract:

Friction reduction is an important aspect in the context of sustainability and energy transition. Rolling bearings are therefore used in many applications in which components move relative to each other. Conventionally lubricated rolling bearings are used in a wide range of applications, but are not suitable under certain conditions. Conventional lubricants such as grease or oil cannot be used at very high or very low temperatures. In addition, these lubricants evaporate at very low ambient pressure, e.g. in a high vacuum environment, making the use of solid lubricated bearings unavoidable. With the use of solid-lubricated bearings, predicting the service life becomes more complex. While the end of the service life of bearings with conventional lubrication is mainly caused by the failure of the bearing components due to material fatigue, solid-lubricated bearings fail at the moment when the lubrication layer is worn and the rolling elements come into direct contact with the raceway during operation. In order to extend the service life of these bearings beyond the service life of the initial coating, the use of transfer lubrication is recommended, in which pockets or sacrificial cages are used in which the balls run and can thus absorb the lubricant, which is then available for lubrication in tribological contact. This contribution presents the results of wear and service life tests on solid-lubricated rolling bearings with sacrificial cage pockets. The cage of the bearing consists of a polyimide (PI) matrix with 15% molybdenum disulfide (MoS2) and serves as a lubrication depot alongside the silver-coated balls. The bearings are tested under high vacuum (pE < 10-2 Pa) at a temperature of 300 °C on a four-bearing test rig. First, investigations of the bearing system within the bearing service life are presented and the torque curve, the wear mass and surface analyses are discussed. With regard to wear, it can be seen that the bearing rings tend to increase in mass over the service life of the bearing, while the balls and the cage tend to lose mass. With regard to the elementary surface properties, the surfaces of the bearing rings and balls are examined in terms of the mass of the elements on them. Furthermore, service life investigations with different material pairings are presented, whereby the focus here is on the service life achieved in addition to the torque curve, wear development and surface analysis. It was shown that MoS2 in the cage leads to a longer service life, while a silver (Ag) coating on the balls has no positive influence on the service life and even appears to reduce it in combination with MoS2.

Keywords: ball bearings, molybdenum disulfide, solid lubricated bearings, solid lubrication mechanisms

Procedia PDF Downloads 43
841 A Non-Iterative Shape Reconstruction of an Interface from Boundary Measurement

Authors: Mourad Hrizi

Abstract:

In this paper, we study the inverse problem of reconstructing an interior interface D appearing in the elliptic partial differential equation: Δu+χ(D)u=0 from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown subdomain D is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method.

Keywords: inverse problem, topological optimization, topological gradient, Kohn-Vogelius formulation

Procedia PDF Downloads 239
840 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 228
839 Effects of Smoking on the Indoor Air Quality and COVID-19

Authors: Sonam Sandal, Susan Verghese P.

Abstract:

The phrase "environmental tobacco smoke" (ETS) refers to exposure to tobacco smoke that isn't from your own smoking but instead is caused by being in close proximity to someone else's cigar, cigarette, or pipe smoke. Environmental cigarette smoke is one of the main contributors to indoor air pollution (IAP), which is exceedingly harmful to human health and results in millions of deaths each year, according to the World Health Organization. Sidestream smoke (SS), which is discharged from a cigarette's burning end in between puffs, is the primary cause of ETS. The bulk of the ETS residue is composed of gases that are produced while smoking through the cigarette paper, mainstream smoke (MS) ingested, and side stream smoke emitted while inhaling a puff from the burning end. Each of these mixtures—SS, ETS, and MS—is an aerosol composed of an IAP-causing vapor phase and a particle phase. Therefore, indoor air-cleaning equipment designed to remove particles will not significantly alter nicotine exposure but will alter the concentrations of other dangerous substances, including particulate matter (PM), PM 2.5, and PM 10. In conclusion, indoor airborne contaminants pose serious risks to human health. ETS degrades the air quality, and when someone breathes this bad air, it weakens their lungs and makes them more susceptible to COVID-19.

Keywords: pm 10, covid-19, indoor air pollution, cigarette smoke., pm 2.5

Procedia PDF Downloads 68
838 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case

Authors: Lukas Reznak, Maria Reznakova

Abstract:

Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.

Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany

Procedia PDF Downloads 243
837 Calculating of the Heat Exchange in a Rotating Pipe: Application to the Cooling of Turbine Blades

Authors: A. Miloud

Abstract:

In this work, the results of numerical simulations of the turbulent flow with 3D heat transfer are presented for the case of two U-shaped channels and rotating rectangular section. The purpose of this investigation was to study the effect of the corrugated walls of the heated portion on the improved cooling, in particular the influence of the wavelength. The calculations were performed for a Reynolds number ranging from 10 000 to 100 000, two values of the number of rotation (Ro = 0.0 to 0.14) and a ratio of the restricted density to 0.13. In these simulations, ANSYS FLUENT code was used to solve the Reynolds equations expressing relations between different fields averaged variables over time. Model performance k-omega SST model and RSM are evaluated through a comparison of the numerical results for each model and the experimental and numerical data available. In this work, detailed average temperature predictions, the scope of the secondary flow and distributions of local Nusselt are presented. It turns out that the corrugated configuration further urges the heat exchange provided to reduce the velocity of the coolant inside the channel.

Keywords: cooling blades, corrugated walls, model k-omega SST and RSM, fluent code, rotation effect

Procedia PDF Downloads 246
836 Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation

Authors: Sung-Min Kim, Joon-Hong Park, Hyuk Choi

Abstract:

This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments.

Keywords: anti-splash device, P/V valve, sloshing, CFD

Procedia PDF Downloads 632
835 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System

Authors: A. S. Walkey, N. P. Patidar

Abstract:

It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.

Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices

Procedia PDF Downloads 498
834 The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria

Authors: N. Benabdeslam, N. Bouzidi, F. Atmani, R. Boucif, A. Sakhri

Abstract:

The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore.

Keywords: characteristic granular, grinding, mineralogical composition, phosphate ore, parameters

Procedia PDF Downloads 199
833 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 121
832 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations

Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane

Abstract:

In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.

Keywords: chaos, fractional-order, Melnikov method, nanobeam

Procedia PDF Downloads 157
831 Synchrotron Radiation and Inverse Compton Scattering in Astrophysical Plasma

Authors: S. S. Sathiesh

Abstract:

The aim of this project is to study the radiation mechanism synchrotron and Inverse Compton scattering. Theoretically, we discussed spectral energy distribution for both. Programming is done for plotting the graph of Power-law spectrum for synchrotron Radiation using fortran90. The importance of power law spectrum was discussed and studied to infer its physical parameters from the model fitting. We also discussed how to infer the physical parameters from the theoretically drawn graph, we have seen how one can infer B (magnetic field of the source), γ min, γ max, spectral indices (p1, p2) while fitting the curve to the observed data.

Keywords: blazars/quasars, beaming, synchrotron radiation, Synchrotron Self Compton, inverse Compton scattering, mrk421

Procedia PDF Downloads 410
830 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic

Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao

Abstract:

There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.

Keywords: asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition

Procedia PDF Downloads 199
829 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 223
828 Study of Cavitation Phenomena Based on Flow Visualization Test in 3-Way Reversing Valve

Authors: Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

A 3-way reversing valve has been used in automotive washing machines to remove remaining oil and dirt on machined engine and transmission blocks. It provides rapid and accurate changes of water flow direction without any precise control device. However, due to its complicated bottom-plug shape, a cavitation occurs in a wide range of the bottom-plug in a downstream. In this study, the cavitation index and POC (percent of cavitation) were used to evaluate quantitatively the cavitation phenomena occurring at the bottom-plug. An optimal shape design was carried out via parametric study for geometries of the bottom-plug, in which a simple CAE-model was used in order to avoid time-consuming CFD analysis and hard to achieve convergence. To verify the results of numerical analysis, a flow visualization test was carried out using a test specimen with a transparent acryl pipe according to ISA-RP75.23. The flow characteristics such as the cavitation occurring in the downstream were investigated by using a flow test equipment with valve and pump including a flow control system and high-speed camera.

Keywords: cavitation, flow visualization test, optimal shape design, percent of cavitation, reversing valve

Procedia PDF Downloads 298