Search results for: bi-directional long and short-term memory networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9540

Search results for: bi-directional long and short-term memory networks

8970 The Role of Social Networking in Activating the Participation of Youth in the Community

Authors: Raya Hamed Hial Al Maamari

Abstract:

The gulf societies have been undergoing radical changes because of the technology transfer. It altered the humanities attitudes. Especially, youth habits so they become a fond of using social networking. This study aimed to find out the ratio of social networking in Directing youth to participate with government institutions in decision-making and improving their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young men from different gulf countries, using an electronic questionnaire, with some interviews with famous leaders of youth groups. Finally, the researchers suggested many effective views to activate youth efforts using social networks as an effective manner to plan for the development policy and Implemented accurately in the community. The findings illustrated that social networks play a vital role in encouraging youth to participate Enthusiastically in providing the service. As it notices these networks contain large numbers of youth. Therefore, the influences become widely and feasible. Moreover, the study indicated the fact that most of youth teamwork started in these social networks. Then, it has been growing to the real society.

Keywords: social work, volunteering, youth, community

Procedia PDF Downloads 346
8969 O-LEACH: The Problem of Orphan Nodes in the LEACH of Routing Protocol for Wireless Sensor Networks

Authors: Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi

Abstract:

The optimum use of coverage in wireless sensor networks (WSNs) is very important. LEACH protocol called Low Energy Adaptive Clustering Hierarchy, presents a hierarchical clustering algorithm for wireless sensor networks. LEACH is a protocol that allows the formation of distributed cluster. In each cluster, LEACH randomly selects some sensor nodes called cluster heads (CHs). The selection of CHs is made with a probabilistic calculation. It is supposed that each non-CH node joins a cluster and becomes a cluster member. Nevertheless, some CHs can be concentrated in a specific part of the network. Thus, several sensor nodes cannot reach any CH. to solve this problem. We created an O-LEACH Orphan nodes protocol, its role is to reduce the sensor nodes which do not belong the cluster. The cluster member called Gateway receives messages from neighboring orphan nodes. The gateway informs CH having the neighboring nodes that not belong to any group. However, Gateway called (CH') attaches the orphaned nodes to the cluster and then collected the data. O-Leach enables the formation of a new method of cluster, leads to a long life and minimal energy consumption. Orphan nodes possess enough energy and seeks to be covered by the network. The principal novel contribution of the proposed work is O-LEACH protocol which provides coverage of the whole network with a minimum number of orphaned nodes and has a very high connectivity rates.As a result, the WSN application receives data from the entire network including orphan nodes. The proper functioning of the Application requires, therefore, management of intelligent resources present within each the network sensor. The simulation results show that O-LEACH performs better than LEACH in terms of coverage, connectivity rate, energy and scalability.

Keywords: WSNs; routing; LEACH; O-LEACH; Orphan nodes; sub-cluster; gateway; CH’

Procedia PDF Downloads 371
8968 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 58
8967 Efficient Broadcasting in Wireless Sensor Networks

Authors: Min Kyung An, Hyuk Cho

Abstract:

In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.

Keywords: broadcast, collision-free, directional antenna, approximation, wireless sensor networks

Procedia PDF Downloads 346
8966 Location Management in Wireless Sensor Networks with Mobility

Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar

Abstract:

Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.

Keywords: mobility management, motes, multihop, wireless sensor networks

Procedia PDF Downloads 418
8965 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 167
8964 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 342
8963 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
8962 The Collective Memory, Node Reconstruction and Local Belongingness in the Settlement of Outlying Islands: By Taking the Important Architectural Complex of Wang-an Hua-Zhai Settlement as an Example

Authors: Shu-Yen Wang, Shyh-Huei Hwang

Abstract:

Designated as an important architectural complex of settlement by the Ministry of Culture, Hua-Zhai Settlement located in Wang-An Township, Peng-Hu County, of Taiwan has been progressively restored year by year and is now at the revitalization and reutilization stage. Over the last 5 years, YunTech has participated in the restoration project while being in compliance with the Bureau of Cultural Heritage’s spirit of 'Living Heritage Conservation'. In this study, reflections have been made to evaluate the contemporariness of traditional settlement development from the aspects of revitalization and reutilization. On the one hand, the connection between settlers’ experiences and emotions have been clarified through the living nodes, collective memory, and social-cultural connotation. On the other hand, activity design has promoted the reconstruction of living nodes and facilitated the reconnection of collective memory, enabling us to explore the contemporariness of living nodes after the reconstruction. With the adoption of literature review, participant observation, and interview analysis methods, this study concludes the following results: 1) The node reconstruction brings back the memories and makes emotional connections: the spatial collective memory is composed of different components. During the reconstruction of node space, villagers participated not only in the narration of the history but also in the restoration of the space. This process enables villagers to bring back their memories and make emotional connections thereto. 2) Villagers’ understanding towards revitalization has been facilitated through node reconstruction: as a medium of this project, activity design has facilitated node reconstruction by offering villagers a natural environment to build up emotional connections to the settlement. This also enables us to better understand the meaning of settlement activation for the local community. 3) New connections are established in life between villagers and the university through the construction of living nodes: through the local implementation of node reconstruction, new connections have been established in life between villagers who participated in the project and the university. In the meantime, the university’s entrance to the community has also been revalued.

Keywords: collective memory, local sense of belonging, reconstruction of living nodes, the important architectural complex of Wang-An Hua-Zhai settlement

Procedia PDF Downloads 132
8961 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali

Abstract:

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements

Procedia PDF Downloads 537
8960 Enhancing Throughput for Wireless Multihop Networks

Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis

Abstract:

Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.

Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network

Procedia PDF Downloads 518
8959 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies

Authors: Rade M. Ciric

Abstract:

The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.

Keywords: engineering education, power distribution network, syllabus implementation, outcome evaluation

Procedia PDF Downloads 402
8958 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN

Procedia PDF Downloads 425
8957 Effect of Removing Hub Domain on Human CaMKII Isoforms Sensitivity to Calcium/Calmodulin

Authors: Ravid Inbar

Abstract:

CaMKII (calcium-calmodulin dependent protein kinase II) makes up 2% of the protein in our brain and has a critical role in memory formation and long-term potentiation of neurons. Despite this, research has yet to uncover the role of one of the domains on the activation of this kinase. The following proposes to express the protein without the hub domain in E. coli, leaving only the kinase and regulatory segment of the protein. Next, a series of kinase assays will be conducted to elucidate the role the hub domain plays on CaMKII sensitivity to calcium/calmodulin activation. The hub domain may be important for activation; however, it may also be a variety of domains working together to influence protein activation and not the hub alone. Characterization of a protein is critical to the future understanding of the protein's function, as well as for producing pharmacological targets in cases of patients with diseases.

Keywords: CaMKII, hub domain, kinase assays, kinase + reg seg

Procedia PDF Downloads 89
8956 A Long Tail Study of eWOM Communities

Authors: M. Olmedilla, M. R. Martinez-Torres, S. L. Toral

Abstract:

Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels.

Keywords: eWOM, online user reviews, long tail theory, product categorization, social network analysis

Procedia PDF Downloads 421
8955 Informational Efficiency and Integration: Evidence from Gulf Cooperation Council (GCC) Shariah Equity Market

Authors: Sania Ashraf

Abstract:

The paper focuses on the prevalence of informational efficiency and integration of GCC Shariah Equity market for the period of 01st January 2010 to 31st June 2015 with daily equity returns of Kuwait, Oman, Qatar, Bahrain, Saudi Arabia and United Arab Emirates. The study employs traditional as well as the modern approach of tracing out the efficiency and integration in the return series. From the results of efficiency it was observed that the market lacked efficiency in terms of its past information. The results of integration test clearly indicates that there was a long memory in the returns of GCC Shariah during the study period. Hence it was concluded and proved that the returns of all GCC Equity Shariah were not informationally efficient but fractionally integrated during the study period.

Keywords: efficiency, Fama, GCC shariah, hurst exponent, integration, serial correlation

Procedia PDF Downloads 362
8954 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 203
8953 Phone Number Spoofing Attack in VoLTE

Authors: Joo-Hyung Oh, Sekwon Kim, Myoungsun Noh, Chaetae Im

Abstract:

The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on All-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. Moreover, in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.

Keywords: LTE, 4G, VoLTE, phone number spoofing

Procedia PDF Downloads 522
8952 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
8951 Abilitest Battery: Presentation of Tests and Psychometric Properties

Authors: Sylwia Sumińska, Łukasz Kapica, Grzegorz Szczepański

Abstract:

Introduction: Cognitive skills are a crucial part of everyday functioning. Cognitive skills include perception, attention, language, memory, executive functions, and higher cognitive skills. With the aging of societies, there is an increasing percentage of people whose cognitive skills decline. Cognitive skills affect work performance. The appropriate diagnosis of a worker’s cognitive skills reduces the risk of errors and accidents at work which is also important for senior workers. The study aimed to prepare new cognitive tests for adults aged 20-60 and assess the psychometric properties of the tests. The project responds to the need for reliable and accurate methods of assessing cognitive performance. Computer tests were developed to assess psychomotor performance, attention, and working memory. Method: Two hundred eighty people aged 20-60 will participate in the study in 4 age groups. Inclusion criteria for the study were: no subjective cognitive impairment, no history of severe head injuries, chronic diseases, psychiatric and neurological diseases. The research will be conducted from February - to June 2022. Cognitive tests: 1) Measurement of psychomotor performance: Reaction time, Reaction time with selective attention component; 2) Measurement of sustained attention: Visual search (dots), Visual search (numbers); 3) Measurement of working memory: Remembering words, Remembering letters. To assess the validity and the reliability subjects will perform the Vienna Test System, i.e., “Reaction Test” (reaction time), “Signal Detection” (sustained attention), “Corsi Block-Tapping Test” (working memory), and Perception and Attention Test (TUS), Colour Trails Test (CTT), Digit Span – subtest from The Wechsler Adult Intelligence Scale. Eighty people will be invited to a session after three months aimed to assess the consistency over time. Results: Due to ongoing research, the detailed results from 280 people will be shown at the conference separately in each age group. The results of correlation analysis with the Vienna Test System will be demonstrated as well.

Keywords: aging, attention, cognitive skills, cognitive tests, psychomotor performance, working memory

Procedia PDF Downloads 105
8950 Effect of Preloading on Long-Term Settlement of Closed Landfills: A Numerical Analysis

Authors: Mehrnaz Alibeikloo, Hajar Share Isfahani, Hadi Khabbaz

Abstract:

In recent years, by developing cities and increasing population, reconstructing on closed landfill sites in some regions is unavoidable. Long-term settlement is one of the major concerns associated with reconstruction on landfills after closure. The purpose of this research is evaluating the effect of preloading in various patterns of height and time on long-term settlements of closed landfills. In this regard, five scenarios of surcharge from 1 to 3 m high within 3, 4.5 and 6 months of preloading time have been modeled using PLAXIS 2D software. Moreover, the numerical results have been compared to those obtained from analytical methods, and a good agreement has been achieved. The findings indicate that there is a linear relationship between settlement and surcharge height. Although, long-term settlement decreased by applying a longer and higher preloading, the time of preloading was found to be a more effective factor compared to preloading height.

Keywords: preloading, long-term settlement, landfill, PLAXIS 2D

Procedia PDF Downloads 195
8949 Developing Academic English through Interaction

Authors: John Bankier

Abstract:

Development of academic English occurs not only in communities of practice but also within wider social networks, referred to by Zappa-Hollman and Duff as individual networks of practice. Such networks may exist whether students are developing academic English in English-dominant contexts or in contexts in which English is not a majority language. As yet, little research has examined how newcomers to universities interact with a variety of social ties in such networks to receive academic and emotional support as they develop the academic English necessary to succeed in local and global academia. The one-year ethnographic study described in this presentation followed five Japanese university students enrolled on an academic English program in their home country. We graphically represent participants’ individual networks of practice related to academic English and display the role of interaction in these networks to socialization. Specific examples of academic practices will be linked to specific instances of social interaction. Interaction supportive of the development of academic practices often occurred during unplanned interactions outside the classroom and among small groups of close friends who were connected to each other in more than one way, such as those taking multiple classes together. These interactions occurred in study spaces, in hallways between class periods, at lunchtimes, and online. However, constraints such as differing accommodation arrangements, class scheduling and the hierarchical levelling of English classes by test scores discouraged some participants both from forming strong ties related to English and from interacting with existing ties. The presentation will briefly describe ways in which teachers in all contexts can maximise interaction outside the classroom.

Keywords: academic, english, practice, network

Procedia PDF Downloads 258
8948 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 144
8947 Personalized Social Resource Recommender Systems on Interest-Based Social Networks

Authors: C. L. Huang, J. J. Sia

Abstract:

The interest-based social networks, also known as social bookmark sharing systems, are useful platforms for people to conveniently read and collect internet resources. These platforms also providing function of social networks, and users can share and explore internet resources from the social networks. Providing personalized internet resources to users is an important issue on these platforms. This study uses two types of relationship on the social networks—following and follower and proposes a collaborative recommender system, consisting of two main steps. First, this study calculates the relationship strength between the target user and the target user's followings and followers to find top-N similar neighbors. Second, from the top-N similar neighbors, the articles (internet resources) that may interest the target user are recommended to the target user. In this system, users can efficiently obtain recent, related and diverse internet resources (knowledge) from the interest-based social network. This study collected the experimental dataset from Diigo, which is a famous bookmark sharing system. The experimental results show that the proposed recommendation model is more accurate than two traditional baseline recommendation models but slightly lower than the cosine model in accuracy. However, in the metrics of the diversity and executing time, our proposed model outperforms the cosine model.

Keywords: recommender systems, social networks, tagging, bookmark sharing systems, collaborative recommender systems, knowledge management

Procedia PDF Downloads 172
8946 The Bidirectional Effect between Parental Burnout and the Child’s Internalized and/or Externalized Behaviors

Authors: Aline Woine, Moïra Mikolajczak, Virginie Dardier, Isabelle Roskam

Abstract:

Background information: Becoming a parent is said to be the happiest event one can ever experience in one’s life. This popular (and almost absolute) truth–which no reasonable and decent human being would ever dare question on pain of being singled out as a bad parent–contrasts with the nuances that reality offers. Indeed, while many parents do thrive in their parenting role, some others falter and become progressively overwhelmed by their parenting role, ineluctably caught in a spiral of exhaustion. Parental burnout (henceforth PB) sets in when parental demands (stressors) exceed parental resources. While it is now generally acknowledged that PB affects the parent’s behavior in terms of neglect and violence toward their offspring, little is known about the impact that the syndrome might have on the children’s internalized (anxious and depressive symptoms, somatic complaints, etc.) and/or externalized (irritability, violence, aggressiveness, conduct disorder, oppositional disorder, etc.) behaviors. Furthermore, at the time of writing, to our best knowledge, no research has yet tested the reverse effect, namely, that of the child's internalized and/or externalized behaviors on the onset and/or maintenance of parental burnout symptoms. Goals and hypotheses: The present pioneering research proposes to fill an important gap in the existing literature related to PB by investigating the bidirectional effect between PB and the child’s internalized and/or externalized behaviors. Relying on a cross-lagged longitudinal study with three waves of data collection (4 months apart), our study tests a transactional model with bidirectional and recursive relations between observed variables and at the three waves, as well as autoregressive paths and cross-sectional correlations. Methods: As we write this, wave-two data are being collected via Qualtrics, and we expect a final sample of about 600 participants composed of French-speaking (snowball sample) and English-speaking (Prolific sample) parents. Structural equation modeling is employed using Stata version 17. In order to retain as much statistical power as possible, we use all available data and therefore apply the maximum likelihood with a missing value (mlmv) as the method of estimation to compute the parameter estimates. To limit (in so far is possible) the shared method variance bias in the evaluation of the child’s behavior, the study relies on a multi-informant evaluation approach. Expected results: We expect our three-wave longitudinal study to show that PB symptoms (measured at T1) raise the occurrence/intensity of the child’s externalized and/or internalized behaviors (measured at T2 and T3). We further expect the child’s occurrence/intensity of externalized and/or internalized behaviors (measured at T1) to augment the risk for PB (measured at T2 and T3). Conclusion: Should our hypotheses be confirmed, our results will make an important contribution to the understanding of both PB and children’s behavioral issues, thereby opening interesting theoretical and clinical avenues.

Keywords: exhaustion, structural equation modeling, cross-lagged longitudinal study, violence and neglect, child-parent relationship

Procedia PDF Downloads 73
8945 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
8944 Multi-Layer Mn-Doped SnO2 Thin Film for Multi-State Resistive Switching

Authors: Zhemi Xu, Dewei Chu, Sean Li

Abstract:

Well self-assembled pure and Mn-doped SnO2 nanocubes were synthesized by interface thermodynamic method, which is ideal for highly homogeneous large scale thin film deposition on flexible substrates for various electric devices. Mn-doped SnO2 shows very good resistive switching with high On/Off ratio (over 103), endurance and retention characteristics. More important, the resistive state can be tuned by multi-layer fabrication by alternate pure SnO2 and Mn-doped SnO2 nanocube layer, which improved the memory capacity of resistive switching effectively. Thus, such a method provides transparent, multi-level resistive switching for next generation non-volatile memory applications.

Keywords: metal oxides, self-assembly nanoparticles, multi-level resistive switching, multi-layer thin film

Procedia PDF Downloads 345
8943 The Coauthorship Network Analysis of the Norwegian School of Economics

Authors: Ivan Belik, Kurt Jornsten

Abstract:

We construct the coauthorship network based on the scientific collaboration between the faculty members at the Norwegian School of Economics (NHH) and based on their international academic publication experience. The network structure is based on the NHH faculties’ publications recognized by the ISI Web of Science for the period 1950 – Spring, 2014. The given network covers the publication activities of the NHH faculty members (over six departments) based on the information retrieved from the ISI Web of Science in Spring, 2014. In this paper we analyse the constructed coauthorship network in different aspects of the theory of social networks analysis.

Keywords: coauthorship networks, social networks analysis, Norwegian School of Economics, ISI

Procedia PDF Downloads 432
8942 Augmented Reality and Storytelling in Cities: An Application to Lisbon Street Art

Authors: Francisco Guimarães, Mauro Figueiredo, José Rodrigues

Abstract:

Cities are spaces of memory with several zones (parts of cities) with their own history and cultural events. Today, cities are also marked by a form of intangible cultural heritage like street art, which creates a visual culture based on the process of reflection about the city and the world. To link these realities and create a personal user interaction with this cultural heritage it is important to capture the story and aesthetics, and find alternatives to immerse the user in these spaces of memory. To that end, this article presents a project which combines Augmented Reality technologies and concepts of Transmedia Storytelling applied to Lisbon City, using Street Art artifacts as markers in a framework of digital media-art.

Keywords: augmented reality, cultural heritage, street art, transmedia storytelling, digital media-art

Procedia PDF Downloads 321
8941 Sentiment Analysis in Social Networks Sites Based on a Bibliometrics Analysis: A Comprehensive Analysis and Trends for Future Research Planning

Authors: Jehan Fahim M. Alsulami

Abstract:

Academic research about sentiment analysis in sentiment analysis has obtained significant advancement over recent years and is flourishing from the collection of knowledge provided by various academic disciplines. In the current study, the status and development trend of the field of sentiment analysis in social networks is evaluated through a bibliometric analysis of academic publications. In particular, the distributions of publications and citations, the distribution of subject, predominant journals, authors, countries are analyzed. The collaboration degree is applied to measure scientific connections from different aspects. Moreover, the keyword co-occurrence analysis is used to find out the major research topics and their evolutions throughout the time span. The area of sentiment analysis in social networks has gained growing attention in academia, with computer science and engineering as the top main research subjects. China and the USA provide the most to the area development. Authors prefer to collaborate more with those within the same nation. Among the research topics, newly risen topics such as COVID-19, customer satisfaction are discovered.

Keywords: bibliometric analysis, sentiment analysis, social networks, social media

Procedia PDF Downloads 218