Search results for: thyristor-controlled series compensator
2655 pscmsForecasting: A Python Web Service for Time Series Forecasting
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.Keywords: time series, forecasting, web service, open source
Procedia PDF Downloads 832654 Representation of Emotions and Characters in Turkish and Indian Series
Authors: Lienjang Zeite
Abstract:
Over the past few years, Turkish and Indian series have been distributed worldwide to countless households and have found ardent followers across different age group. The series have captured numerous hearts. Turkish and Indian series have become not only one of the best means of entertainment and relaxation but also a platform to learn and appreciate shared emotions and social messages. The popularity of the series has created a kind of interest in representing human emotions and stories like never before. The demands for such series have totally shifted the entertainment industry at a new level. The interest and vibe created by the series have had impacts on various departments spanning from technology to the fashion industry and it has also become the bridge to connect viewers across the globe. The series have amassed avid admirers who find solace in the beautiful visual representations of human relationships whether it is of lovers, family or friendship. The influence of Turkish and Indian series in many parts of the world has created a cultural phenomenon that has taken viewers beyond cultural and language differences. From China to Latin America, Arab countries and the Caucasus region, the series have been accepted and loved by millions of viewers. It has captivated audiences ranging from grandmothers to teenagers. Issues like language barrier are easily solved by means of translation or dubbing making it easier to understand and enjoy the series. Turkey and India are two different countries with their own unique culture and traditions. Both the countries are exporters of series in large scale. The series function as a platform to reveal the plots and shed lights on characters of all kinds. Both the countries produce series that are more or less similar in nature. However, there are also certain issues that are shown in different ways and light. The paper will discuss how emotions are represented in Turkish and Indian series. It will also discuss the ways the series have impacted the art of representing emotions and characters in the digital era. The representation of culture through Turkish and Indian series will be explored as well. The paper will also locate the issue of gender roles and how relationships are forged or abandoned in the series. The issue of character formation and importance of moral factors will be discussed. It will also examine the formula and ingredients of turning human emotions and characters into a much loved series.Keywords: characters, cultural phenomenon, emotions, Turkish and Indian series
Procedia PDF Downloads 1362653 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.Keywords: chaotic behavior, wavelet, noise reduction, river flow
Procedia PDF Downloads 4682652 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 2752651 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter
Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache
Abstract:
In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.Keywords: drives, inverter, multi-phase induction machine, vector control
Procedia PDF Downloads 4802650 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks
Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas
Abstract:
The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, wind energy conversion systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system
Procedia PDF Downloads 7342649 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques
Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt
Abstract:
Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.Keywords: forecasting, time series, auto regression, ARCH, ARMA
Procedia PDF Downloads 3482648 Toward Particular Series with (k,h)-Jacobsthal Sequence
Authors: Seyyd Hossein Jafari-Petroudi, Maryam Pirouz
Abstract:
This note is devoted to (k; h)-Jacobsthal sequence as a general term of particular series. More formulas for nth term and sum of the first n terms of series that their general terms are (k; h)-Jacobsthal sequence and (k; h)-Jacobsthal-Petroudi sequence are derived. Finally other properties of these sequences are represented.Keywords: (k, h)-Jacobsthal sequence, (k, h)-Jacobsthal Petroudisequence, recursive relation, sum
Procedia PDF Downloads 3922647 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach
Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier
Abstract:
The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis
Procedia PDF Downloads 1042646 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative
Procedia PDF Downloads 152645 The Modelling of Real Time Series Data
Authors: Valeria Bondarenko
Abstract:
We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.Keywords: mathematical model, random process, Wiener process, fractional Brownian motion
Procedia PDF Downloads 3572644 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 2682643 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric
Authors: Kejal Khatri, Vishnu Narayan Mishra
Abstract:
We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability
Procedia PDF Downloads 4192642 A Posteriori Trading-Inspired Model-Free Time Series Segmentation
Authors: Plessen Mogens Graf
Abstract:
Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.Keywords: time series segmentation, model-free, trading-inspired, multivariate data
Procedia PDF Downloads 1362641 Residual Power Series Method for System of Volterra Integro-Differential Equations
Authors: Zuhier Altawallbeh
Abstract:
This paper investigates the approximate analytical solutions of general form of Volterra integro-differential equations system by using the residual power series method (for short RPSM). The proposed method produces the solutions in terms of convergent series requires no linearization or small perturbation and reproduces the exact solution when the solution is polynomial. Some examples are given to demonstrate the simplicity and efficiency of the proposed method. Comparisons with the Laplace decomposition algorithm verify that the new method is very effective and convenient for solving system of pantograph equations.Keywords: integro-differential equation, pantograph equations, system of initial value problems, residual power series method
Procedia PDF Downloads 4182640 Development of Materials Based on Phosphates of NaZr2(PO4)3 with Low Thermal Expansion
Authors: V. Yu. Volgutov, A. I. Orlova, S. A. Khainakov
Abstract:
NaZr2(PO4)3 (NZP) and their structural analogues are characterized by a peculiar behaviors on heating – they have different expansion and contraction along different crystallographic directions due to specific arrangements of crystal structure in these compounds. An important feature of such structures is the ability to incorporate into their structural analogues wide variety of metal cations having different size and oxidation states, with different combinations and concentrations. These cations are located in different crystallographic non-equivalent positions of octahedral tetrahedral crystal framework as well as in inter-framework cavities. Through, due to iso- and hetero-valent isomorphism of the cations (and the anions) in NZP, it becomes possible to tuning the compositions and to obtain the compounds with ‘on a plan’ properties. For the design of compounds with low and ultra-low thermal expansion including those with tailored thermal expansion properties, the following crystallochemical principles it seems are promising: 1) Insertion into crystal M1 position the cations having different sizes and, 2) the variation in the composition of compounds, providing different occupation of crystal M1 position. Following these principles we have designed and synthesized the next NZP-type phosphates series: a) where radii of the cations in the M1 crystal position was varied: Zr1/4Zr2(PO4)3 - Th1/4Zr2(PO4)3 (series I); R1/3Zr2(PO4)3 where R= Nd, Eu, Er (series II), b) where the occupation of M1 crystal position was varied: Zr1/4Zr2(PO4)3-Er1/3Zr2(PO4)3 (series III) and Zr1/4Zr2(PO4)3-Sr1/2Zr2(PO4)3 (series IV). The thermal expansion parameters were determined over the range of 25-800ºC. For each series the minimum axial coefficient of thermal expansion αa = αb, αc and their anisotropy Δα = Iαa - αcI, 10-6 K-1 was found as next: -1.51, 1.07, 2.58 for Th1/4Zr2(PO4)3 (series I); -0.72, 0.10, 0.81 for Nd1/3Zr2(PO4)3 (series II); -2.78, 1.35, 4.12 for Er1/6Zr1/8Zr2(PO4)3 (series III); 2.23, 1.32, 0.91 for Sr1/2Zr2(PO4)3 (series IV). The measured tendencies of the thermal expansion of crystals were in good agreement with predicted ones. For one of the members from the studied phosphates namely Th1/16Zr3/16Zr2(PO4)3 structural refinement have been carried out at 25, 200, 600, and 800°C. The dependencies of the structural parameters with the temperature have been determined.Keywords: high-temperature crystallography, NaZr2(PO4)3, (NZP) analogs, structural-chemical principles, tuning thermal expansion
Procedia PDF Downloads 2332639 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 2462638 Comparisons of Individual and Group Replacement Policies for a Series Connection System with Two Machines
Authors: Wen Liang Chang, Mei Wei Wang, Ruey Huei Yeh
Abstract:
This paper studies the comparisons of individual and group replacement policies for a series connection system with two machines. Suppose that manufacturer’s production system is a series connection system which is combined by two machines. For two machines, when machines fail within the operating time, minimal repair is performed for machines by the manufacturer. The manufacturer plans to a preventive replacement for machines at a pre-specified time to maintain system normal operation. Under these maintenance policies, the maintenance cost rate models of individual and group replacement for a series connection system with two machines is derived and further, optimal preventive replacement time is obtained such that the expected total maintenance cost rate is minimized. Finally, some numerical examples are given to illustrate the influences of individual and group replacement policies to the maintenance cost rate.Keywords: individual replacement, group replacement, replacement time, two machines, series connection system
Procedia PDF Downloads 4882637 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1412636 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series
Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee
Abstract:
This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.Keywords: detrended fluctuation analysis, generalized hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum, time series analysis
Procedia PDF Downloads 3932635 A Comparative Study of Substituted Li Ferrites Sintered by the Conventional and Microwave Sintering Technique
Authors: Ibetombi Soibam
Abstract:
Li-Zn-Ni ferrite having the compositional formula Li0.4-0.5xZn0.2NixFe2.4-0.5xO4 where x = 0.02 ≤ x ≤0.1 in steps of 0.02 was fabricated by the citrate precursor method. In this method, metal nitrates and citric acid was used to prepare the gel which exhibit self-propagating combustion behavior giving the required ferrite sample. The ferrite sample was given a pre-firing at 650°C in a programmable conventional furnace for 3 hours with a heating rate of 5°C/min. A series of the sample was finally given conventional sintering (CS) at 1040°C after the pre-firing process. Another series was given microwave sintering (MS) at 1040°C in a programmable microwave furnace which uses a single magnetron operating at 2.45 GHz frequency. X- ray diffraction pattern confirmed the spinel phase structure for both the series. The theoretical and experimental density was calculated. It was observed that densification increases with the increase in Ni concentration in both the series. However, samples sintered by microwave technique was found to be denser. The microstructure of the two series of the sample was examined using scanning electron microscopy (SEM). Dielectric properties have been investigated as a function of frequency and composition for both series of samples sintered by CS and MS technique. The variation of dielectric constant with frequency show dispersion for both the series. It was explained in terms of Koop’s two layer model. From the analysis of dielectric measurement, it was observed that the value of room temperature dielectric constant decreases with the increase in Ni concentration for both the series. The microwave sintered samples show a lower dielectric constant making microwave sintering suitable for high-frequency applications. The possible mechanisms contributing to all the above behavior is being discussed.Keywords: citrate precursor, dielectric constant, ferrites, microwave sintering
Procedia PDF Downloads 4052634 Spontaneous Transformation in U. Maritimus: A Case Series
Authors: Lur N. Dreier
Abstract:
Spontaneous transformation in Ursus maritimus is generally considered to be seldom, albeit not, to this author's best knowledge, previously unpublished in the medical literature. However, no case series has to date described transformative spontaneous processes to filios hominum species. Norwegian public hospital system, is, however, especially the grounds of the specific climate in the Northern hemisphere, and because of a high suited to observe such transformations, both on income level. Hence, this paper describes, to our knowledge, the first case series of 25 patients undergoing treatment for spontaneous transformation in four Norwegian hospitals. The methodology was to include patients on a consecutive basis, identifying clinically and laboratory the typology in each of the four hospitals. The major findings were that the archetypes were heterogeneous, with coercive laboratory findings, with a high degree of redundancy of the process. This might potentially lead to many advances in the diagnostics.Keywords: case series, transformation, hominum species, maritimus species
Procedia PDF Downloads 2662633 Approximation of the Time Series by Fractal Brownian Motion
Authors: Valeria Bondarenko
Abstract:
In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model
Procedia PDF Downloads 3762632 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision
Procedia PDF Downloads 4882631 Series Solutions to Boundary Value Differential Equations
Authors: Armin Ardekani, Mohammad Akbari
Abstract:
We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.Keywords: computational mathematics, differential equations, engineering, series
Procedia PDF Downloads 3362630 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 1052629 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 3302628 Prediction of SOC Stock using ROTH-C Model and Mapping in Different Agroclimatic Zones of Tamil Nadu
Authors: R. Rajeswari
Abstract:
An investigation was carried out to know the SOC stock and its change over time in benchmark soils of different agroclimatic zones of Tamil Nadu. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern. Soil map prepared on 1:50,000 scale from Natural Resources Information System (NRIS) employed under satellite data (IRS-1C/1D-PAN sharpened LISS-III image) was used to estimate SOC stock in different agroclimatic zones of Tamil Nadu. Fifteen benchmark soils were selected in different agroclimatic zones of Tamil Nadu based on their land use and the areal extent to assess SOC level and its change overtime. This revealed that, between eleven years of period (1997 - 2007). SOC buildup was higher in soils under horticulture system, followed by soils under rice cultivation. Among different agroclimatic zones of Tamil Nadu hilly zone have the highest SOC stock, followed by north eastern, southern, western, cauvery delta, north western, and high rainfall zone. Although organic carbon content in the soils of North eastern, southern, western, North western, Cauvery delta were less than high rainfall zone, the SOC stock was high. SOC density was higher in high rainfall and hilly zone than other agroclimatic zones of Tamil Nadu. Among low rainfall regions of Tamil Nadu cauvery delta zone recorded higher SOC density. Roth.C model was used to assess SOC stock under existing and alternate cropping pattern in viz., Periyanaickenpalayam series (western zone), Peelamedu series (southern zone), Vallam series (north eastern zone), Vannappatti series (north western zone) and Padugai series (cauvery delta zone). Padugai series recorded higher TOC, BIO, and HUM, followed by Periyanaickenpalayam series, Peelamedu series, Vallam series, and Vannappatti series. Vannappatti and Padugai series develop high TOC, BIO, and HUM under existing cropping pattern. Periyanaickenpalayam, Peelamedu, and Vallam series develop high TOC, BIO, and HUM under alternate cropping pattern. Among five selected soil series, Periyanaickenpalayam, Peelamedu, and Padugai series recorded 0.75 per cent TOC during 2025 and 2018, 2100 and 2035, 2013 and 2014 under existing and alternate cropping pattern, respectively.Keywords: agro climatic zones, benchmark soil, land use, soil organic carbon
Procedia PDF Downloads 952627 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking
Procedia PDF Downloads 1462626 Inflating the Public: A Series of Urban Interventions
Authors: Veronika Antoniou, Rene Carraz, Yiorgos Hadjichristou
Abstract:
The Green Urban Lab took the form of public installations that were placed at various locations in four cities in Cyprus. These installations - through which a series of events, activities, workshops and research took place - were the main tools in regenerating a series of urban public spaces in Cyprus. The purpose of this project was to identify issues and opportunities related to public space and to offer guidelines on how design and participatory democracy improvements could strengthen civil society, while raising the quality of the urban public scene. Giant inflatable structures were injected in important urban fragments in order to accommodate series of events. The design and playful installation generated a wide community engagement. The fluid presence of the installations acted as a catalyst for social interaction. They were accessed and viewed effortlessly and surprisingly, creating opportunities to rediscover public spaces.Keywords: bottom-up initiatives, creativity, public space, social innovation, urban environments
Procedia PDF Downloads 516