Search results for: system dynamics identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21841

Search results for: system dynamics identification

21811 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 289
21810 A System Dynamics Approach to Exploring Personality Traits in Young Children

Authors: Misagh Faezipour

Abstract:

System dynamics is a systems engineering approach that can help address the complex challenges in different systems. Little is known about how the brain represents people to predict behavior. This work is based on how the brain simulates different personal behavior and responds to them in the case of young children ages one to five. As we know, children’s minds/brains are just as clean as a crystal, and throughout time, in their surroundings, families, and education center, they grow to develop and have different kinds of behavior towards the world and the society they live in. Hence, this work aims to identify how young children respond to various personality behavior and observes their reactions towards them from a system dynamics perspective. We will be exploring the Big Five personality traits in young children. A causal model is developed in support of the system dynamics approach. These models graphically present the factors and factor relationships that contribute to the big five personality traits and provide a better understanding of the entire behavior model. A simulator will be developed that includes a set of causal model factors and factor relationships. The simulator models the behavior of different factors related to personality traits and their impacts and can help make more informed decisions in a risk-free environment.

Keywords: personality traits, systems engineering, system dynamics, causal model, behavior model

Procedia PDF Downloads 96
21809 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 469
21808 Objective-Based System Dynamics Modeling to Forecast the Number of Health Professionals in Pudong New Area of Shanghai

Authors: Jie Ji, Jing Xu, Yuehong Zhuang, Xiangqing Kang, Ying Qian, Ping Zhou, Di Xue

Abstract:

Background: In 2014, there were 28,341 health professionals in Pudong new area of Shanghai and the number per 1000 population was 5.199, 55.55% higher than that in 2006. But it was always less than the average number of health professionals per 1000 population in Shanghai from 2006 to 2014. Therefore, allocation planning for the health professionals in Pudong new area has become a high priority task in order to meet the future demands of health care. In this study, we constructed an objective-based system dynamics model to forecast the number of health professionals in Pudong new area of Shanghai in 2020. Methods: We collected the data from health statistics reports and previous survey of human resources in Pudong new area of Shanghai. Nine experts, who were from health administrative departments, public hospitals and community health service centers, were consulted to estimate the current and future status of nine variables used in the system dynamics model. Based on the objective of the number of health professionals per 1000 population (8.0) in Shanghai for 2020, the system dynamics model for health professionals in Pudong new area of Shanghai was constructed to forecast the number of health professionals needed in Pudong new area in 2020. Results: The system dynamics model for health professionals in Pudong new area of Shanghai was constructed. The model forecasted that there will be 37,330 health professionals (6.433 per 1000 population) in 2020. If the success rate of health professional recruitment changed from 20% to 70%, the number of health professionals per 1000 population would be changed from 5.269 to 6.919. If this rate changed from 20% to 70% and the success rate of building new beds changed from 5% to 30% at the same time, the number of health professionals per 1000 population would be changed from 5.269 to 6.923. Conclusions: The system dynamics model could be used to simulate and forecast the health professionals. But, if there were no significant changes in health policies and management system, the number of health professionals per 1000 population would not reach the objectives in Pudong new area in 2020.

Keywords: allocation planning, forecast, health professional, system dynamics

Procedia PDF Downloads 386
21807 Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach

Authors: José Carlos Rodríguez, Mario Gómez, Medardo Serna

Abstract:

This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.

Keywords: complex adaptive systems, higher education institutions, Mexico, system dynamics

Procedia PDF Downloads 317
21806 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 327
21805 Self-Tuning Robot Control Based on Subspace Identification

Authors: Mathias Marquardt, Peter Dünow, Sandra Baßler

Abstract:

The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions.

Keywords: auto tuning, balanced robot, closed loop identification, subspace identification

Procedia PDF Downloads 380
21804 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 319
21803 Frequency Identification of Wiener-Hammerstein Systems

Authors: Brouri Adil, Giri Fouad

Abstract:

The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.

Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science

Procedia PDF Downloads 535
21802 Parameter Estimation in Dynamical Systems Based on Latent Variables

Authors: Arcady Ponosov

Abstract:

A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.

Keywords: generalized law of mass action, metamodels, principal components, synergetic systems

Procedia PDF Downloads 355
21801 Long Term Love Relationships Analyzed as a Dynamic System with Random Variations

Authors: Nini Johana Marín Rodríguez, William Fernando Oquendo Patino

Abstract:

In this work, we model a coupled system where we explore the effects of steady and random behavior on a linear system like an extension of the classic Strogatz model. This is exemplified by modeling a couple love dynamics as a linear system of two coupled differential equations and studying its stability for four types of lovers chosen as CC='Cautious- Cautious', OO='Only other feelings', OP='Opposites' and RR='Romeo the Robot'. We explore the effects of, first, introducing saturation, and second, adding a random variation to one of the CC-type lover, which will shape his character by trying to model how its variability influences the dynamics between love and hate in couple in a long run relationship. This work could also be useful to model other kind of systems where interactions can be modeled as linear systems with external or internal random influence. We found the final results are not easy to predict and a strong dependence on initial conditions appear, which a signature of chaos.

Keywords: differential equations, dynamical systems, linear system, love dynamics

Procedia PDF Downloads 353
21800 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 162
21799 Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems

Authors: Ali Afaghi, Sehraneh Ghaemi

Abstract:

The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications.

Keywords: fractional-order multi-agent systems, leader-following consensus, nonlinear dynamics, directed graphs

Procedia PDF Downloads 398
21798 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).

Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation

Procedia PDF Downloads 336
21797 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280
21796 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor

Authors: J. Ritonja

Abstract:

The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.

Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification

Procedia PDF Downloads 124
21795 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
21794 Iot-Based Interactive Patient Identification and Safety Management System

Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro

Abstract:

We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).

Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band

Procedia PDF Downloads 311
21793 A Study of Chaos Control Schemes for Plankton-Fish Dynamics

Authors: Rajinder Pal Kaur, Amit Sharma, Anuj Kumar Sharma, Govind Prasad Sahu

Abstract:

The existence of chaos in the marine ecosystems may cause planktonic blooms, disease outbreaks, extinction of some plankton species, or some complex dynamics in oceans, which can adversely affect the sustainable marine ecosystem. The control of the chaotic plankton-fish dynamics is one of the main motives of marine ecologists. In this paper, we have studied the impact of phytoplankton refuge, zooplankton refuge, and fear effect on the chaotic plankton-fish dynamics incorporating phytoplankton, zooplankton, and fish biomass. The fear of fish predation transfers the unpredictable(chaotic) behavior of the plankton system to a stable orbit. The defense mechanism developed by prey species due to fear of the predator population can also terminate chaos from the given dynamics. Moreover, the impact of external disturbances like seasonality, noise, periodic fluctuations, and time delay on the given chaotic plankton system has also been discussed. We have applied feedback mechanisms to control the complexity of the system through the parameter noise. The non-feedback schemes are implemented to observe the role of seasonal force, periodic fluctuations, and time delay in suppressing the given chaotic system. Analytical results are substantiated by numerical simulation.

Keywords: plankton, chaos, noise, seasonality, fluctuations, fear effect, prey refuge

Procedia PDF Downloads 84
21792 Dynamics, Hierarchy and Commensalities: A Study of Inter Caste Relationship in a North Indian Village

Authors: K. Pandey

Abstract:

The present study is a functional analysis of the relationship between castes which indicates the dynamics of the caste structure in the rural setting. The researcher has tried to show both the cooperation and competition on important ceremonial and social occasions. The real India exists in the villages, so we need to know about their solidarity and also what the village life is and has been shaping into. We need to emphasize a microcosmic study of Indian rural life. Furthermore, caste integration is an acute problem country faces today. To resolve this we are required to know the dynamics of behavior of the people of different castes and for the study of the caste dynamics a study of caste relations are needed. The present study is an attempt in this direction.

Keywords: hierarchial groups, jajmani system, functional dependence, commensalities

Procedia PDF Downloads 280
21791 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls

Authors: Ramdas Sonawane, Mahaveer Gadiya

Abstract:

The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.

Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations

Procedia PDF Downloads 444
21790 New Approach for Constructing a Secure Biometric Database

Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir

Abstract:

The multimodal biometric identification is the combination of several biometric systems. The challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.

Keywords: biometric databases, multimodal biometrics, security authentication, digital watermarking

Procedia PDF Downloads 390
21789 Leader Self-sacrifice in Sports Organizations

Authors: Stefano Ruggieri, Rubinia C. Bonfanti

Abstract:

Research on leadership in sports organizations has proved extremely fruitful in recent decades, favoring the growing and diffusion of figures such as mental coaches, trainers, etc. Recent scholarly attention on organizations has been directed towards the phenomenon of leader self-sacrifice, wherein leaders who display such behavior are perceived by their followers as more effective, charismatic, and legitimate compared to those who prioritize self-interest. This growing interest reflects the importance of leaders who prioritize the collective welfare over personal gain, as they inspire greater loyalty, trust, and dedication among their followers, ultimately fostering a more cohesive and high-performing team environment. However, there is limited literature on the mechanisms through which self-sacrifice influences both group dynamics (such as cohesion and team identification) and individual factors (such as self-competence). The aim of the study is to analyze the impact of the leader self-sacrifice on cohesion, team identification and self-competence. Team identification is a crucial determinant of individual identity, delineated by the extent to which a team member aligns with a specific organizational team rather than broader social collectives. This association motivates members to synchronize their actions with the collective interests of the group, thereby fostering cohesion among its constituents, and cultivating a shared sense of purpose and unity within the team. In the domain of team sports, particularly soccer and water polo, two studies involving 447 participants (men = 238, women = 209) between 22 and 35 years old (M = 26.36, SD = 5.51) were conducted. The first study employed a correlational methodology to investigate the predictive capacity of self-sacrifice on cohesion, team identification, self-efficacy, and self-competence. The second study utilized an experimental design to explore the relationship between team identification and self-sacrifice. Together, these studies provided comprehensive insights into the multifaceted nature of leader self-sacrifice and its profound implications for group cohesion and individual well-being within organizational settings. The findings underscored the pivotal role of leader self-sacrifice in not only fostering stronger bonds among team members but also in enhancing critical facets of group dynamics, ultimately contributing to the overall effectiveness and success of the team.

Keywords: cohesion, leadership, self-sacrifice, sports organizations, team-identification

Procedia PDF Downloads 44
21788 Fast-Forward Problem in Asymmetric Double-Well Potential

Authors: Iwan Setiawan, Bobby Eka Gunara, Katshuhiro Nakamura

Abstract:

The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields.

Keywords: driving potential, Adiabatic Quantum Dynamics, regulation, electromagnetic field

Procedia PDF Downloads 338
21787 Complexity in a Leslie-Gower Delayed Prey-Predator Model

Authors: Anuraj Singh

Abstract:

The complex dynamics is explored in a prey predator system with multiple delays. The predator dynamics is governed by Leslie-Gower scheme. The existence of periodic solutions via Hopf bifurcation with respect to delay parameters is established. To substantiate analytical findings, numerical simulations are performed. The system shows rich dynamic behavior including chaos and limit cycles.

Keywords: chaos, Hopf bifurcation, stability, time delay

Procedia PDF Downloads 326
21786 Characteristic Matrix Faults for Flight Control System

Authors: Thanh Nga Thai

Abstract:

A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.

Keywords: fault detection and identification, sensor faults, actuator faults, flight control system

Procedia PDF Downloads 422
21785 A Supply Chain Traceability Improvement Using RFID

Authors: Yaser Miaji, Mohammad Sabbagh

Abstract:

Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.

Keywords: supply chain, RFID, tractability, radio frequency identification

Procedia PDF Downloads 487
21784 Identification of Shocks from Unconventional Monetary Policy Measures

Authors: Margarita Grushanina

Abstract:

After several prominent central banks including European Central Bank (ECB), Federal Reserve System (Fed), Bank of Japan and Bank of England employed unconventional monetary policies in the aftermath of the financial crisis of 2008-2009 the problem of identification of the effects from such policies became of great interest. One of the main difficulties in identification of shocks from unconventional monetary policy measures in structural VAR analysis is that they often are anticipated, which leads to a non-fundamental MA representation of the VAR model. Moreover, the unconventional monetary policy actions may indirectly transmit to markets information about the future stance of the interest rate, which raises a question of the plausibility of the assumption of orthogonality between shocks from unconventional and conventional policy measures. This paper offers a method of identification that takes into account the abovementioned issues. The author uses factor-augmented VARs to increase the information set and identification through heteroskedasticity of error terms and rank restrictions on the errors’ second moments’ matrix to deal with the cross-correlation of the structural shocks.

Keywords: factor-augmented VARs, identification through heteroskedasticity, monetary policy, structural VARs

Procedia PDF Downloads 348
21783 Methodology for the Integration of Object Identification Processes in Handling and Logistic Systems

Authors: L. Kiefer, C. Richter, G. Reinhart

Abstract:

The uprising complexity in production systems due to an increasing amount of variants up to customer innovated products leads to requirements that hierarchical control systems are not able to fulfil. Therefore, factory planners can install autonomous manufacturing systems. The fundamental requirement for an autonomous control is the identification of objects within production systems. In this approach an attribute-based identification is focused for avoiding dose-dependent identification costs. Instead of using an identification mark (ID) like a radio frequency identification (RFID)-Tag, an object type is directly identified by its attributes. To facilitate that it’s recommended to include the identification and the corresponding sensors within handling processes, which connect all manufacturing processes and therefore ensure a high identification rate and reduce blind spots. The presented methodology reduces the individual effort to integrate identification processes in handling systems. First, suitable object attributes and sensor systems for object identification in a production environment are defined. By categorising these sensor systems as well as handling systems, it is possible to match them universal within a compatibility matrix. Based on that compatibility further requirements like identification time are analysed, which decide whether the combination of handling and sensor system is well suited for parallel handling and identification within an autonomous control. By analysing a list of more than thousand possible attributes, first investigations have shown, that five main characteristics (weight, form, colour, amount, and position of subattributes as drillings) are sufficient for an integrable identification. This knowledge limits the variety of identification systems and leads to a manageable complexity within the selection process. Besides the procedure, several tools, as an example a sensor pool are presented. These tools include the generated specific expert knowledge and simplify the selection. The primary tool is a pool of preconfigured identification processes depending on the chosen combination of sensor and handling device. By following the defined procedure and using the created tools, even laypeople out of other scientific fields can choose an appropriate combination of handling devices and sensors which enable parallel handling and identification.

Keywords: agent systems, autonomous control, handling systems, identification

Procedia PDF Downloads 177
21782 Disability, Stigma and In-Group Identification: An Exploration across Different Disability Subgroups

Authors: Sharmila Rathee

Abstract:

Individuals with disability/ies often face negative attitudes, discrimination, exclusion, and inequality of treatment due to stigmatization and stigmatized treatment. While a significant number of studies in field of stigma suggest that group-identification has positive consequences for stigmatized individuals, ironically very miniscule empirical work in sight has attempted to investigate in-group identification as a coping measure against stigma, humiliation and related experiences among disability group. In view of death of empirical research on in-group identification among disability group, through present work, an attempt has been made to examine the experiences of stigma, humiliation, and in-group identification among disability group. Results of the study suggest that use of in-group identification as a coping strategy is not uniform across members of disability group and degree of in-group identification differs across different sub-groups of disability groups. Further, in-group identification among members of disability group depends on variables like degree and impact of disability, factors like onset of disability, nature, and visibility of disability, educational experiences and resources available to deal with disabling conditions.

Keywords: disability, stigma, in-group identification, social identity

Procedia PDF Downloads 324