Search results for: solar spots
1700 A Comparative Case Study on the Relationship between Solar Energy Potential and Block Typology and Density in Shanghai Context
Abstract:
This study explores the relationship between solar potential and block typology and density by analyzing sixteen existing typical street blocks with different topologies and densities in Shanghai, a representative high-density urban in China. Several indicators are proposed to quantify, and a methodology is conducted to evaluate and compare the solar potential both on façade and roof across various selected urban forms. 1) The importance of appropriate solar energy indicators and geometric parameters to be used in comparative studies, and 2) the relationship between urban typology, density, and solar performance are discussed. In this way, the results reveal the key design attributes contributing to increasing solar potential.Keywords: block typology, geometric parameters, high-density urban, solar potential
Procedia PDF Downloads 3361699 Optimization of Solar Chimney Power Production
Authors: Olusola Bamisile, Oluwaseun Ayodele, Mustafa Dagbasi
Abstract:
The main objective of this research is to optimize the power produced by a solar chimney wind turbine. The cut out speed and the maximum possible production are considered while performing the optimization. Solar chimney is one of the solar technologies that can be used in rural areas at cheap cost. With over 50% of rural areas still yet to have access to electricity. The OptimTool in MATLAB is used to maximize power produced by the turbine subject to certain constraints. The results show that an optimized turbine produces about ten times the power of the normal turbine which is 111 W/h. The rest of the research discuss in detail solar chimney power plant and the optimization simulation used in this study.Keywords: solar chimney, optimization, wind turbine, renewable energy systems
Procedia PDF Downloads 5871698 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D
Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui
Abstract:
During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D
Procedia PDF Downloads 5201697 Fabrication of Silicon Solar Cells Using All Sputtering Process
Authors: Ching-Hua Li, Sheng-Hui Chen
Abstract:
Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process.Keywords: solar cell, sputtering process, pvd, alloy target
Procedia PDF Downloads 5801696 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate
Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya
Abstract:
Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.Keywords: active solar still, desalination, fins, solar collector
Procedia PDF Downloads 2181695 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.Keywords: solar system, agricultural greenhouse, heating, storage, drying
Procedia PDF Downloads 881694 Experimental Study of a Solar Still with Four Glass Cover
Authors: Zakaria Haddad, Azzedine Nahoui, Mohamed Salmi, Ali Djagham
Abstract:
Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still.Keywords: drinking water, four glass cover, production, solar distillation
Procedia PDF Downloads 1371693 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1441692 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells
Authors: Soumitra Satapathi, Anubhav Raghav
Abstract:
Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells
Procedia PDF Downloads 1641691 Experimental Study on a Solar Heat Concentrating Steam Generator
Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li
Abstract:
Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.Keywords: heat concentrating, heat loss, medium temperature, solar steam production
Procedia PDF Downloads 1811690 Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran
Authors: M.Goodarzi, M.Mohammadi, M. Rezaee
Abstract:
The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate.Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with storage battery, AC solar water pumping with storage tank and DC direct solar water pumping.Keywords: technical feasibility, solar energy, photovoltaic systems, photovoltaic water pumping system
Procedia PDF Downloads 6311689 Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator
Authors: Ashish Lochan, Anil K. Dahiya, Amit Verma
Abstract:
The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS.Keywords: photovoltaic-thermal, solar energy, seasonal performance analysis, TRANSYS
Procedia PDF Downloads 6571688 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds
Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff
Abstract:
A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. Matlab codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results are found to be in good agreement.Keywords: finite difference method, salt-gradient solar-pond, solar energy, transient heat and mass transfer
Procedia PDF Downloads 3711687 Embodiment Design of an Azimuth-Altitude Solar Tracker
Authors: M. Culman, O. Lengerke
Abstract:
To provide an efficient solar generation system, the embodiment design of a two axis solar tracker for an array of photovoltaic (PV) panels destiny to supply the power demand on off-the-grid areas was developed. Photovoltaic cells have high costs in relation to t low efficiency; and while a lot of research and investment has been made to increases its efficiency a few points, there is a profitable solution that increases by 30-40% the annual power production: two axis solar trackers. A solar tracker is a device that supports a load in a perpendicular position toward the sun during daylight. Mounted on solar trackers, the solar panels remain perpendicular to the incoming sunlight at day and seasons so the maximum amount of energy is outputted. Through a preview research done it was justified why the generation of solar energy through photovoltaic panels mounted on dual axis structures is an attractive solution to bring electricity to remote off-the-grid areas. The work results are the embodiment design of an azimuth-altitude solar tracker to guide an array of photovoltaic panels based on a specific design methodology. The designed solar tracker is mounted on a pedestal that uses two slewing drives‚ with a nominal torque of 1950 Nm‚ to move a solar array that provides 3720 W from 12 PV panels.Keywords: azimuth-altitude sun tracker, dual-axis solar tracker, photovoltaic system, solar energy, stand-alone power system
Procedia PDF Downloads 2591686 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.Keywords: solar system, agricultural greenhouse, heating, storage
Procedia PDF Downloads 771685 Estimation of Global and Diffuse Solar Radiation Studies of Islamabad, Capital City of Pakistan
Authors: M. Akhlaque Ahmed, Maliha Afshan, Adeel Tahir
Abstract:
Global and diffuse solar radiation studies have been carried out for the Capital city of Pakistan, Islamabad ( latitude 330 43’N and Longitude 370 71’E) to assess the solar potential of the area. The global and diffuse solar radiation were carried out using sunshine hour data for the above-mentioned area. Monthly total solar radiation is calculated through regression constants a and b through declination angle of the sun and sunshine hours and KT that is cloudiness index are used to calculate the diffuse solar radiation. Result obtained shows variation in the direct and diffuse component of solar radiation in summer and winter months for Islamabad. Diffuse solar radiation was found maximum in July, i.e., 32% whereas direct or beam radiation was found to be high in April to June, i.e., 73%. During July, August, and December, the sky was found cloudy. From the result, it appears that with the exception of monsoon month July and August the solar energy can be utilized very efficiently throughout the year in Islamabad.Keywords: global radiation, Islamabad, diffuse radiation, sky condition, sunshine hour
Procedia PDF Downloads 1681684 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors
Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek
Abstract:
Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.Keywords: experimental, photovoltaic, solar, temperature
Procedia PDF Downloads 4891683 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater
Authors: Suresh Prasad Sharma, Som Nath Saha
Abstract:
This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.Keywords: corrugated absorber, double flow, flat plate, solar air heater
Procedia PDF Downloads 2851682 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey
Authors: N. Arslanoglu
Abstract:
This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0◦ to 90◦ in steps of 1◦ was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0◦ (June) and 59◦ (December) throughout the year. In winter (December, January, and February) the tilt should be 55◦, in spring (March, April, and May) 19.6◦, in summer (June, July, and August) 5.6◦, and in autumn (September, October, and November) 44.3◦. The yearly average of this value was obtained to be 31.1◦ and this would be the optimum fixed slope throughout the year.Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface
Procedia PDF Downloads 2601681 Effect of Dust on Performances of Single Crystal Photovoltaic Solar Module
Authors: A. Benatiallah, D. Benatiallah, A. Harrouz, F. Abaidi, S. Mansouri
Abstract:
Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system fluctuates and depend on meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work, we have studied the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.Keywords: solar modulen pv, dust effect, experimental, performances
Procedia PDF Downloads 4981680 Performance Evaluation of Single Basin Solar Still
Authors: Prem Singh, Jagdeep Singh
Abstract:
In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml, respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square meter aperture area and annual performance ratio for single basin solar still is 1095 liters and 0.43 liters, respectively. The payback period for micro-stepped solar still is 2.5 years.Keywords: solar distillation, solar still, single basin, still
Procedia PDF Downloads 5051679 An Approach on the Design of a Solar Cell Characterization Device
Authors: Christoph Mayer, Dominik Holzmann
Abstract:
This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.Keywords: solar cell, photovoltaics, PV, characterization
Procedia PDF Downloads 4211678 Stand Alone Multiple Trough Solar Desalination with Heat Storage
Authors: Abderrahmane Diaf, Kamel Benabdellaziz
Abstract:
Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system
Procedia PDF Downloads 4401677 Investigating the Effect of Adding the Window Layer and the Back Surface Field Layer of InₓGa₍₁₋ₓ₎P Material to GaAs Single Junction Solar Cell
Authors: Ahmad Taghinia, Negar Gholamishaker
Abstract:
GaAs (gallium arsenide) solar cells have gained significant attention for their use in space applications. These solar cells have the potential for efficient energy conversion and are being explored as potential power sources for electronic devices, satellites, and telecommunication equipment. In this study, the aim is to investigate the effect of adding a window layer and a back surface field (BSF) layer made of InₓGa₍₁₋ₓ₎P material to a GaAs single junction solar cell. In this paper, we first obtain the important electrical parameters of a single-junction GaAs solar cell by utilizing a two-dimensional simulator software for virtual investigation of the solar cell; then, we analyze the impact of adding a window layer and a back surface field layer made of InₓGa₍₁₋ₓ₎P on the solar cell. The results show that the incorporation of these layers led to enhancements in Jsc, Voc, FF, and the overall efficiency of the solar cell.Keywords: back surface field layer, solar cell, GaAs, InₓGa₍₁₋ₓ₎P, window layer
Procedia PDF Downloads 761676 Assessment of the Photovoltaic and Solar Thermal Potential Installation Area on Residential Buildings: Case Study of Amman, Jordan
Authors: Jenan Abu Qadourah
Abstract:
The suitable surface areas for the ST and PV installation are determined based on incident solar irradiation on different surfaces, shading analysis and suitable architectural area for integration considering limitations due to the constructions, available surfaces area and use of the available surfaces for other purposes. The incident solar radiation on the building surfaces and the building solar exposure analysis of the location of Amman, Jordan, is performed with Autodesk Ecotect analysis 2011 simulation software. The building model geometry within the typical urban context is created in “SketchUp,” which is then imported into Ecotect. The hourly climatic data of Amman, Jordan selected are the same ones used for the building simulation in IDA ICE and Polysun simulation software.Keywords: photovoltaic, solar thermal, solar incident, simulation, building façade, solar potential
Procedia PDF Downloads 1401675 Effects of the Ambient Temperature and the Defect Density on the Performance the Solar Cell (HIT)
Authors: Bouzaki Mohammed Moustafa, Benyoucef Boumediene, Benouaz Tayeb, Benhamou Amina
Abstract:
The ambient temperature and the defects density in the Hetero-junction with Intrinsic Thin layers solar cells (HIT) strongly influence their performances. In first part, we presented the bands diagram on the front/back simulated solar cell based on a-Si: H / c-Si (p)/a-Si:h. In another part, we modeled the following layers structure: ZnO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p)/Ag where we studied the effect of the ambient temperature and the defects density in the gap of the crystalline silicon layer on the performance of the heterojunction solar cell with intrinsic layer (HIT).Keywords: heterojunction solar cell, solar cell performance, bands diagram, ambient temperature, defect density
Procedia PDF Downloads 5091674 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells
Authors: A. Guechi, M. Chegaar
Abstract:
This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS
Procedia PDF Downloads 3971673 Enhancement of Pool Boiling Regimes by Sand Deposition
Authors: G. Mazor, I. Ladizhensky, A. Shapiro, D. Nemirovsky
Abstract:
A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3.Keywords: heat transfer enhancement, nucleate boiling, film boiling, transfer boiling
Procedia PDF Downloads 1281672 Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate
Authors: Gwi Hyun Lee, Mun Soo Na
Abstract:
Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min.Keywords: conical solar concentrator, performance evaluation, solar energy, solar energy system
Procedia PDF Downloads 2791671 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System
Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae
Abstract:
Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy
Procedia PDF Downloads 309