Search results for: rotating speed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3087

Search results for: rotating speed

3057 A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface

Authors: Abdusalam Sharf

Abstract:

In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results.

Keywords: computational fluid dynamics (CFD), SST k−ω shear-stress transport (k−ω mode variant), RNG k–ε renormalisation group (k−ε mode variant), y+ dimensionless distance from wall

Procedia PDF Downloads 355
3056 Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT

Authors: Getnet Ayele Kebede, Tasew Tadiwose Zewdie

Abstract:

In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions.

Keywords: Savonius wind turbine, Small-scale irrigation, Vertical Axis Wind Turbine, Water pump

Procedia PDF Downloads 140
3055 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method

Procedia PDF Downloads 178
3054 Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber

Authors: Malinda Sabrina, F. Andree Yohanes, Khoerul Anwar

Abstract:

There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed.

Keywords: aerodynamics noise, hemi-anechoic chamber, radiator cooling fan, sound pressure level

Procedia PDF Downloads 307
3053 Numerical Study on Enhancement of Heat Transfer by Turbulence

Authors: Muhammad Azmain Abdullah, Ar Rashedul, Mohammad Ali

Abstract:

This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio.

Keywords: swirl flow, twisted tape, twist ratio, heat transfer

Procedia PDF Downloads 244
3052 Operating Speed Models on Tangent Sections of Two-Lane Rural Roads

Authors: Dražen Cvitanić, Biljana Maljković

Abstract:

This paper presents models for predicting operating speeds on tangent sections of two-lane rural roads developed on continuous speed data. The data corresponds to 20 drivers of different ages and driving experiences, driving their own cars along an 18 km long section of a state road. The data were first used for determination of maximum operating speeds on tangents and their comparison with speeds in the middle of tangents i.e. speed data used in most of operating speed studies. Analysis of continuous speed data indicated that the spot speed data are not reliable indicators of relevant speeds. After that, operating speed models for tangent sections were developed. There was no significant difference between models developed using speed data in the middle of tangent sections and models developed using maximum operating speeds on tangent sections. All developed models have higher coefficient of determination then models developed on spot speed data. Thus, it can be concluded that the method of measuring has more significant impact on the quality of operating speed model than the location of measurement.

Keywords: operating speed, continuous speed data, tangent sections, spot speed, consistency

Procedia PDF Downloads 429
3051 Smart Speed Bump

Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh

Abstract:

Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.

Keywords: invention, smart, robotic system, speed bump, traffic, management

Procedia PDF Downloads 392
3050 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 293
3049 Experimental and Numerical Investigation on the Torque in a Small Gap Taylor-Couette Flow with Smooth and Grooved Surface

Authors: L. Joseph, B. Farid, F. Ravelet

Abstract:

Fundamental studies were performed on bifurcation, instabilities and turbulence in Taylor-Couette flow and applied to many engineering applications like astrophysics models in the accretion disks, shrouded fans, and electric motors. Such rotating machinery performances need to have a better understanding of the fluid flow distribution to quantify the power losses and the heat transfer distribution. The present investigation is focused on high gap ratio of Taylor-Couette flow with high rotational speeds, for smooth and grooved surfaces. So far, few works has been done in a very narrow gap and with very high rotation rates and, to the best of our knowledge, not with this combination with grooved surface. We study numerically the turbulent flow between two coaxial cylinders where R1 and R2 are the inner and outer radii respectively, where only the inner is rotating. The gap between the rotor and the stator varies between 0.5 and 2 mm, which corresponds to a radius ratio η = R1/R2 between 0.96 and 0.99 and an aspect ratio Γ= L/d between 50 and 200, where L is the length of the rotor and d being the gap between the two cylinders. The scaling of the torque with the Reynolds number is determined at different gaps for different smooth and grooved surfaces (and also with different number of grooves). The fluid in the gap is air. Re varies between 8000 and 30000. Another dimensionless parameter that plays an important role in the distinction of the regime of the flow is the Taylor number that corresponds to the ratio between the centrifugal forces and the viscous forces (from 6.7 X 105 to 4.2 X 107). The torque will be first evaluated with RANS and U-RANS models, and compared to empirical models and experimental results. A mesh convergence study has been done for each rotor-stator combination. The results of the torque are compared to different meshes in 2D dimensions. For the smooth surfaces, the models used overestimate the torque compared to the empirical equations that exist in the bibliography. The closest models to the empirical models are those solving the equations near to the wall. The greatest torque achieved with grooved surface. The tangential velocity in the gap was always higher in between the rotor and the stator and not on the wall of rotor. Also the greater one was in the groove in the recirculation zones. In order to avoid endwall effects, long cylinders are used in our setup (100 mm), torque is measured by a co-rotating torquemeter. The rotor is driven by an air turbine of an automotive turbo-compressor for high angular velocities. The results of the experimental measurements are at rotational speed of up to 50 000 rpm. The first experimental results are in agreement with numerical ones. Currently, quantitative study is performed on grooved surface, to determine the effect of number of grooves on the torque, experimentally and numerically.

Keywords: Taylor-Couette flow, high gap ratio, grooved surface, high speed

Procedia PDF Downloads 382
3048 Rich 3-Tori Dynamics in Small-Aspect-Ratio Highly Counter-Rotating Taylor-Couette Flow with Reversal of Spiraling Vortices

Authors: S. Altmeyer, B. Hof, F. Marques, J. M. Lopez

Abstract:

We present numerical simulations concerning the reversal of spiraling vortices in short highly counter-rotating cylinders. Increasing the differential cylinder rotation results in global flow-inversion is which develops various different and complex flow dynamics of several quasi-periodic solutions that differ in their number of vortex cells in the bulk. The dynamics change from being dominated of the inner cylinder boundary layer with ’passive’ only responding outer one to be dominated by the outer cylinder boundary layer with only responding inner one. Solutions exist on either two or three tori invariant manifolds whereby they appear as symmetric or asymmetric states. We find for either moderate and high inner cylinder rotation speed the quasiperiodic flow to consist of only two vortex cells but differ as the vortices has opposite spiraling direction. These both flows live on 2-tori but differ in number of symmetries. While for the quasi-periodic flow (q^a_2) at lower rotation speed a pair of symmetrically related 2-tori T2 exists the quasi-periodic flow (q^s_2) at higher rotation speeds is symmetric living on a single 2-torus T2. In addition these both flows differ due to their dominant azimuthal m modes. The first is dominated by m=1 whereas for the latter m=3 contribution is largest. The 2-tori states are separated by a further quasi-periodic flow (q^a_3) living on pair of symmetrically related 3-tori T3. This flow offers a ’periodical’ competition between a two and three vortex cell states in the bulk. This flow is also an m=1 solution as for the quasiperiodic flows living on the pair of symmetrically-related 2-tori states. Moreover we find hysteresis resulting in coexisting regions of different quasiperiodic flows q^s_2 and q^a_3 with increasing and decreasing the differential rotation.

Keywords: transition, bifurcation, torus, symmetries

Procedia PDF Downloads 344
3047 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: super harmonic resonances, non-linear vibration, axially moving beam, Galerkin method

Procedia PDF Downloads 371
3046 Development of Fixture for Pipe to Pipe Friction Stir Welding of Dissimilar Materials

Authors: Aashutosh A. Tadse, Kush Mehta, Hardik Vyas

Abstract:

Friction Stir Welding is a process in which an FSW tool produces friction heat and thus penetrates through the junction and upon rotation carries out the weld by exchange of material within the 2 metals being welded. It involves holding the workpieces stiff enough to bear the force of the tool moving across the junction to carry out a successful weld. The weld that has flat plates as workpieces, has a quite simpler geometry in terms of fixture holding them. In the case of FSW of pipes, the pipes need to be held firm with the chucks and jaws according to the diameter of the pipes being welded; the FSW tool is then revolved around the pipes to carry out the weld. Machine requires a larger area and it becomes more costly because of such a setup. To carry out the weld on the Milling machine, the newly designed fixture must be set-up on the table of milling machine and must facilitate rotation of pipes by the motor being shafted to one end of the fixture, and the other end automatically rotated because of the rotating jaws held tight enough with the pipes. The set-up has tapered cones as the jaws that would go in the pipes thus holding it with the help of its knurled surface providing the required grip. The process has rotation of pipes with the stationary rotating tool penetrating into the junction. The FSW on pipes in this process requires a very low RPM of pipes to carry out a fine weld and the speed shall change with every combination of material and diameter of pipes, so a variable speed setting motor shall serve the purpose. To withstand the force of the tool, an attachment to the shaft is provided which will be diameter specific that will resist flow of material towards the center during the weld. The welded joint thus carried out will be proper to required standards and specifications. Current industrial requirements state the need of space efficient, cost-friendly and more generalized form of fixtures and set-ups of machines to be put up. The proposed design considers every mentioned factor and thus proves to be positive in the same.

Keywords: force of tool, friction stir welding, milling machine, rotation of pipes, tapered cones

Procedia PDF Downloads 92
3045 Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed

Authors: Sungyani Tripathy, Atul Desai

Abstract:

Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds.

Keywords: turbo machinery, SAP: 2000, response spectra, running speeds

Procedia PDF Downloads 232
3044 Performance Evaluation of Pilot Rotating Biological Contactor for Decentralised Management of Domestic Sewage in Delhi

Authors: T. R. Sreekrishnan, Mukesh Khare, Dinesh Upadhyay

Abstract:

In a Rotating Biological Contactor (RBC), the biological film responsible for removal of pollutants is formed on the surface of discs. Evaluation studies of a pilot RBC designed to treat sewage of 150 persons with BOD Loading Rate: 8.2–26.7 g/m2/d, Discharge: 57.6 – 115.2 m3/day, HRT 1.25 – 2.5 hrs, at STP Yamuna Vihar Delhi. Removal of organic materials through use of fixed film reactors such as RBC is accomplished by means of a biological film on the fixed media. May and June in Delhi are dry summer months where the ambient temperature is in the range of 35oC to 45oC. July is a wet monsoon month that receives occasional precipitation, cloud cover, high humidity, with ambient temperature in the range of 30oC to 35oC. The organic and inorganic loads to the RBC employed in this study are actual city sewage conditions. Average in fluent BOD concentrations have been 330 mg/l, 245 mg/l and 160 mg/l and the average COD concentrations have been 670 mg/l, 500 mg/l, and 275 mg/l. The city sewage also has high concentration of ammonia, phosphorous, total suspended solids (TSS). pH of the city sewage is near neutral. Overall, the substrate conditions of city sewage are conducive for biological treatment though aerobic process. The presentation is a part of the ongoing collaborative research initiative between IIT Delhi and Karlsruhe Institute of Technology, Germany which is going on for last 15 years or so in the treatment of sewage waste of Delhi using semi-decentralized treatment system based on Rotating Biological Contactor.

Keywords: Rotating Biological Contactor (RBC), COD, BOD, HRT, STP

Procedia PDF Downloads 367
3043 A Study on the Method of Accelerated Life Test to Electric Rotating System

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.

Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration

Procedia PDF Downloads 299
3042 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper.

Keywords: axi-symmetric, ferrofluid, magnetic field, porous rotating disk

Procedia PDF Downloads 368
3041 The Role of Speed Reduction Model in Urban Highways Tunnels Accidents

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing travel demand in cities, bridges and tunnels are viewed as one of the fundamental components of cities transportation systems. Normally, due to geometric constraints forms in the tunnels, the considered speed in the tunnels is lower than the speed in connected highways. Therefore, drivers tend to reduce the speed near the entrance of the tunnels. In this paper, the effect of speed reduction on accident happened in the entrance of the tunnels has been discussed. The relation between accidents frequency and the parameters of speed, traffic volume and time of the accident in the mentioned tunnel has been analyzed and the mathematical model has been proposed.

Keywords: urban highway, accident, tunnel, mathematical model

Procedia PDF Downloads 448
3040 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 441
3039 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 90
3038 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime

Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.

Keywords: data fusion, round types speed hump, speed hump detection, surface filter

Procedia PDF Downloads 492
3037 Investigation of Mass Transfer for RPB Distillation at High Pressure

Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock

Abstract:

In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.

Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed

Procedia PDF Downloads 27
3036 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradient

Procedia PDF Downloads 247
3035 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways

Authors: Vinayak Malaghan, Digvijay Pawar

Abstract:

Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.

Keywords: operating speed, design consistency, continuous speed profile data, day and night time

Procedia PDF Downloads 135
3034 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid

Procedia PDF Downloads 284
3033 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control

Authors: N. Smaoui, B. Chentouf

Abstract:

The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.

Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability

Procedia PDF Downloads 55
3032 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 312
3031 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip

Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi

Abstract:

This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.

Keywords: MHD nanofluid, porous medium, rotating disk, slip effect

Procedia PDF Downloads 235
3030 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: maritime transportation, reducing fuel, shipping log data, speed optimization

Procedia PDF Downloads 543
3029 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul

Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt

Abstract:

Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.

Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow

Procedia PDF Downloads 335
3028 High-Speed Electrical Drives and Applications: A Review

Authors: Vaishnavi Patil, K. M. Kurundkar

Abstract:

Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.

Keywords: high-speed, electrical machines, drives, applications

Procedia PDF Downloads 37