Search results for: nonlinear regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4481

Search results for: nonlinear regression

4451 Asymptotic Spectral Theory for Nonlinear Random Fields

Authors: Karima Kimouche

Abstract:

In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given.

Keywords: spatial nonlinear processes, spectral estimators, GMC condition, bootstrap method

Procedia PDF Downloads 451
4450 Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids

Authors: Arash Jafari, Mehdi Taghaddosi, Azin Parvin

Abstract:

In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods.

Keywords: viscos fluid, incompressible fluid flow, inclined plane, nonlinear phenomena

Procedia PDF Downloads 283
4449 Existence Theory for First Order Functional Random Differential Equations

Authors: Rajkumar N. Ingle

Abstract:

In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.

Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon

Procedia PDF Downloads 501
4448 An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption

Authors: A. Belmeguenai, K. Mansouri, R. Djemili

Abstract:

This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks.

Keywords: nonlinear filter generator, stream ciphers, speech encryption, security analysis

Procedia PDF Downloads 296
4447 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis

Procedia PDF Downloads 383
4446 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind

Authors: Melusi Khumalo, Anastacia Dlamini

Abstract:

In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.

Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations

Procedia PDF Downloads 375
4445 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510
4444 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model

Authors: Doğan Yıldız, Aydan Müşerref Erkmen

Abstract:

The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.

Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection

Procedia PDF Downloads 191
4443 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: nonlinear oscillations, two-layered liquid, instability region, hydrodynamic coefficients, resonance frequency

Procedia PDF Downloads 218
4442 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations

Authors: Chao-Qing Dai

Abstract:

In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.

Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation

Procedia PDF Downloads 668
4441 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 495
4440 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells

Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves

Abstract:

Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.

Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations

Procedia PDF Downloads 65
4439 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 381
4438 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 391
4437 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System

Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi

Abstract:

In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.

Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control

Procedia PDF Downloads 670
4436 Non-Linear Regression Modeling for Composite Distributions

Authors: Mostafa Aminzadeh, Min Deng

Abstract:

Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.

Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions

Procedia PDF Downloads 32
4435 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 399
4434 Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture

Authors: Kunwar Mrityunjai Sharma, Trilok Nath Singh

Abstract:

The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care.

Keywords: fracture flow, nonlinear flow, cubic law, Navier-stokes equation

Procedia PDF Downloads 106
4433 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 381
4432 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 254
4431 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine

Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi

Abstract:

Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.

Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC

Procedia PDF Downloads 589
4430 Achieving 13th Sustainable Development Goal: Urbanization and ICT Empowerment in Pursuit of Carbon Neutrality - Beyond Linear Thinking

Authors: Salim Khan

Abstract:

The attainment of the carbon neutrality objective and Sustainable Development Goal 13 (SDG-13) target, which pertains to climate actions, received widespread attention in developing and emerging nations. Given the increasing pace of urbanization, technological advancements, and rapid growth, it is imperative to examine the linear and nonlinear effects of urbanization and economic growth and the linear impact of information and communication technology (ICT) on carbon emissions (CO2e). This study employs the Dynamic System GMM (DSGMM) and Panel Quantile Regression (PQR) methodologies to investigate the causal relationship between urbanization, ICT, economic growth, and their interplay on CO2e in 39 BRI countries from 2001 to 2020. The study's findings indicate that the impact of urbanization on CO2e exhibits linear and nonlinear patterns. The specific nonlinear impact of urbanization leads to a decrease in CO2e, hence facilitating the achievement of carbon neutrality and contributing to SDG-13. The study highlights the importance of ICT in achieving SDG-13 by reducing CO2e, emphasizing the need for informatization. Simultaneously, the findings support the Environmental Kuznets Curve (EKC) hypothesis and support the pollution haven theory. Finally, based on empirical findings, significant policy implications are suggested for achieving SGD 13 and carbon neutrality.

Keywords: urbanization, ICT, CO2 emission, EKC, pollution haven, BRI

Procedia PDF Downloads 25
4429 Further Results on Modified Variational Iteration Method for the Analytical Solution of Nonlinear Advection Equations

Authors: A. W. Gbolagade, M. O. Olayiwola, K. O. Kareem

Abstract:

In this paper, further to our result on recent paper on the solution of nonlinear advection equations, we present further results on the nonlinear nonhomogeneous advection equations using a modified variational iteration method.

Keywords: lagrange multiplier, non-homogeneous equations, advection equations, mathematics

Procedia PDF Downloads 300
4428 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 414
4427 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process

Authors: Hao Chen, Bo Guo, Ping Jiang

Abstract:

Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.

Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor

Procedia PDF Downloads 453
4426 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.

Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability

Procedia PDF Downloads 323
4425 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation

Authors: Praveen Kumar, R. Uma, R. P. Sharma

Abstract:

This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.

Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation

Procedia PDF Downloads 72
4424 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 521
4423 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 454
4422 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: nanoscale materials, silver sulfide nanoparticles, nonlinear absorption, nonlinear scattering, optical limiting

Procedia PDF Downloads 396