Search results for: hardware accelerator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 615

Search results for: hardware accelerator

585 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment

Authors: Subodh Kumar, Amit Varde

Abstract:

Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.

Keywords: high performance computing, HPC, cloud computing, optimization, schedulers

Procedia PDF Downloads 78
584 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment

Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref

Abstract:

In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.

Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment

Procedia PDF Downloads 163
583 CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader.

Keywords: hardware scheduler, nMPRA processor, real-time systems, scheduling methods

Procedia PDF Downloads 260
582 Digital Preservation: A Need of Tomorrow

Authors: Gaurav Kumar

Abstract:

Digital libraries have been established all over the world to create, maintain and to preserve the digital materials. This paper exhibits the importance and objectives of digital preservation. The necessities of preservation are hardware and software technology to interpret the digital documents and discuss various aspects of digital preservation.

Keywords: preservation, digital preservation, conservation, archive, repository, document, information technology, hardware, software, organization, machine readable format

Procedia PDF Downloads 574
581 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 135
580 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 40
579 Using the Timepix Detector at CERN Accelerator Facilities

Authors: Andrii Natochii

Abstract:

The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.

Keywords: beam monitoring, channeling, particle tracking, Timepix detector

Procedia PDF Downloads 171
578 Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System

Authors: Mojtaba Barzegar, Alireza Shirazi, Saied Rabi Mahdavi

Abstract:

Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams.

Keywords: intra operative radiotherapy, ethanol chlorobenzene, ksat, output factor, monte carlo simulation

Procedia PDF Downloads 464
577 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis

Authors: Petri Solanti, Russell Klein

Abstract:

Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.

Keywords: design methodology, high-level synthesis, MATLAB, verification

Procedia PDF Downloads 127
576 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.

Keywords: ISA, neural network, Brain Float-16, DUT

Procedia PDF Downloads 79
575 Importance of Hardware Systems and Circuits in Secure Software Development Life Cycle

Authors: Mir Shahriar Emami

Abstract:

Although it is fully impossible to ensure that a software system is quite secure, developing an acceptable secure software system in a convenient platform is not unreachable. In this paper, we attempt to analyze software development life cycle (SDLC) models from the hardware systems and circuits point of view. To date, the SDLC models pay merely attention to the software security from the software perspectives. In this paper, we present new features for SDLC stages to emphasize the role of systems and circuits in developing secure software system through the software development stages, the point that has not been considered previously in the SDLC models.

Keywords: SDLC, SSDLC, software security, software process engineering, hardware systems and circuits security

Procedia PDF Downloads 250
574 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques

Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar

Abstract:

This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.

Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI

Procedia PDF Downloads 81
573 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 71
572 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 495
571 Quality Assurances for an On-Board Imaging System of a Linear Accelerator: Five Months Data Analysis

Authors: Liyun Chang, Cheng-Hsiang Tsai

Abstract:

To ensure the radiation precisely delivering to the target of cancer patients, the linear accelerator equipped with the pretreatment on-board imaging system is introduced and through it the patient setup is verified before the daily treatment. New generation radiotherapy using beam-intensity modulation, usually associated the treatment with steep dose gradients, claimed to have achieved both a higher degree of dose conformation in the targets and a further reduction of toxicity in normal tissues. However, this benefit is counterproductive if the beam is delivered imprecisely. To avoid shooting critical organs or normal tissues rather than the target, it is very important to carry out the quality assurance (QA) of this on-board imaging system. The QA of the On-Board Imager® (OBI) system of one Varian Clinac-iX linear accelerator was performed through our procedures modified from a relevant report and AAPM TG142. Two image modalities, 2D radiography and 3D cone-beam computed tomography (CBCT), of the OBI system were examined. The daily and monthly QA was executed for five months in the categories of safety, geometrical accuracy and image quality. A marker phantom and a blade calibration plate were used for the QA of geometrical accuracy, while the Leeds phantom and Catphan 504 phantom were used in the QA of radiographic and CBCT image quality, respectively. The reference images were generated through a GE LightSpeed CT simulator with an ADAC Pinnacle treatment planning system. Finally, the image quality was analyzed via an OsiriX medical imaging system. For the geometrical accuracy test, the average deviations of the OBI isocenter in each direction are less than 0.6 mm with uncertainties less than 0.2 mm, while all the other items have the displacements less than 1 mm. For radiographic image quality, the spatial resolution is 1.6 lp/cm with contrasts less than 2.2%. The spatial resolution, low contrast, and HU homogenous of CBCT are larger than 6 lp/cm, less than 1% and within 20 HU, respectively. All tests are within the criteria, except the HU value of Teflon measured with the full fan mode exceeding the suggested value that could be due to itself high HU value and needed to be rechecked. The OBI system in our facility was then demonstrated to be reliable with stable image quality. The QA of OBI system is really necessary to achieve the best treatment for a patient.

Keywords: CBCT, image quality, quality assurance, OBI

Procedia PDF Downloads 288
570 Integrated Teaching of Hardware Courses for the Undergraduates of Computer Science and Engineering to Attain Focused Outcomes

Authors: Namrata D. Hiremath, Mahalaxmi Bhille, P. G. Sunitha Hiremath

Abstract:

Computer systems play an integral role in all facets of the engineering profession. This calls for an understanding of the processor-level components of computer systems, their design and operation, and their impact on the overall performance of the systems. Systems users are always in need of faster, more powerful, yet cheaper computer systems. The focus of Computer Science engineering graduates is inclined towards software oriented base. To be an efficient programmer there is a need to understand the role of hardware architecture towards the same. It is essential for the students of Computer Science and Engineering to know the basic building blocks of any computing device and how the digital principles can be used to build them. Hence two courses Digital Electronics of 3 credits, which is associated with lab of 1.5 credits and Computer Organization of 5 credits, were introduced at the sophomore level. Activity was introduced with the objective to teach the hardware concepts to the students of Computer science engineering through structured lab. The students were asked to design and implement a component of a computing device using MultiSim simulation tool and build the same using hardware components. The experience of the activity helped the students to understand the real time applications of the SSI and MSI components. The impact of the activity was evaluated and the performance was measured. The paper explains the achievement of the ABET outcomes a, c and k.

Keywords: digital, computer organization, ABET, structured enquiry, course activity

Procedia PDF Downloads 485
569 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology

Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian

Abstract:

Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.

Keywords: energy in buildings, hardware in loop testing, modelica modelling, Monte Carlo simulation, uncertainty propagation

Procedia PDF Downloads 124
568 Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots

Authors: Lucy Jackson, Celyn Walters, Steve Eckersley, Mini Rai, Simon Hadfield

Abstract:

Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs.

Keywords: space robots, automated design, on-orbit operations, hardware design

Procedia PDF Downloads 59
567 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla

Abstract:

Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.

Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning

Procedia PDF Downloads 130
566 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.

Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system

Procedia PDF Downloads 351
565 Power Supply Feedback Regulation Loop Design Using Cadence PSpice Tool: Determining Converter Stability by Simulation

Authors: Debabrata Das

Abstract:

This paper explains how to design a regulation loop for a power supply circuit. It also discusses the need of a regulation loop and the improvement of a circuit with regulation loop. A sample design is used to demonstrate how to use PSpice to design feedback loop to control output voltage of a power supply and how to check if the power supply is stable or oscillatory. A sample design is made using a specific Integrated Circuit (IC) available in the PSpice library. A designer can experiment feedback loop design using Cadence Pspice tool. PSpice is easy to use, reliable, and convenient. To test a feedback loop, generally, engineers use trial and error method with the hardware which takes a lot of time and manpower. Moreover, it is expensive because component and Printed Circuit Board (PCB) may go bad. PSpice can be used by designers to test their loop designs without using hardware circuits. A designer can save time, cost, manpower and simulate his/her power supply circuit accurately before making a real hardware using this software package.

Keywords: power electronics, feedback loop, regulation, stability, pole, zero, oscillation

Procedia PDF Downloads 338
564 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 429
563 Run-Time Customisation of Soft-Core CPUs on Field Programmable Gate Array

Authors: Rehab Abdullah Shendi

Abstract:

The use of customised soft-core processors in which instructions can be integrated into a system in application hardware is increasing in the Field Programmable Gate Array (FPGA) field. Specifically, the partial run-time reconfiguration of FPGAs in specialised processors for a particular domain can be very beneficial. In this report, the design and implementation for the customisation of a soft-core MIPS processor using an FPGA and partial reconfiguration (PR) of FPGA technology will be addressed to achieve efficient resource use. This can be achieved using a PR design flow that helps the design fit into a smaller device. Moreover, the impact of static power consumption could be reduced due to runtime reconfiguration. This will be done by configurable custom instructions implemented in the hardware as an extension on the MIPS CPU. The aim of this project is to investigate the PR of FPGAs for run-time adaptations of the instruction set of a soft-core CPU, including the integration of custom instructions and the exploration of the potential to use the MultiBoot feature available in Xilinx FPGAs to carry out the PR process. The system will be evaluated and tested on a Nexus 3 development board featuring a Xilinx Spartran-6 FPGA. The system will be able to load reconfigurable custom instructions dynamically into user programs with the help of the trap handler when the custom instruction is called by the MIPS CPU. The results of this experiment demonstrate that custom instructions in hardware can speed up a certain function and many instructions can be saved when compared to a software implementation of the same function. Implementing custom instructions in hardware is perfectly possible and worth exploring.

Keywords: customisation, FPGA, MIPS, partial reconfiguration, PR

Procedia PDF Downloads 255
562 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 158
561 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 391
560 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 303
559 3D Interferometric Imaging Using Compressive Hardware Technique

Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil

Abstract:

In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.

Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging

Procedia PDF Downloads 146
558 Presenting Internals of Networks Using Bare Machine Technology

Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha

Abstract:

Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.

Keywords: bare machine computing, online research, network technology, visualizing network internals

Procedia PDF Downloads 155
557 A Multipurpose Inertial Electrostatic Magnetic Confinement Fusion for Medical Isotopes Production

Authors: Yasser R. Shaban

Abstract:

A practical multipurpose device for medical isotopes production is most wanted for clinical centers and researches. Unfortunately, the major supply of these radioisotopes currently comes from aging sources, and there is a great deal of uneasiness in the domestic market. There are also many cases where the cost of certain radioisotopes is too high for their introduction on a commercial scale even though the isotopes might have great benefits for society. The medical isotopes such as radiotracers PET (Positron Emission Tomography), Technetium-99 m, and Iodine-131, Lutetium-177 by is feasible to be generated by a single unit named IEMC (Inertial Electrostatic Magnetic Confinement). The IEMC fusion vessel is the upgrading unit of the Inertial Electrostatic Confinement IEC fusion vessel. Comprehensive experimental works on IEC were carried earlier with promising results. The principle of inertial electrostatic magnetic confinement IEMC fusion is based on forcing the binary fuel ions to interact in the opposite directions in ions cyclotrons orbits with different kinetic energies in order to have equal compression (forces) and with different ion cyclotron frequency ω in order to increase the rate of intersection. The IEMC features greater fusion volume than IEC by several orders of magnitude. The particles rate from the IEMC approach are projected to be 8.5 x 10¹¹ (p/s), ~ 0.2 microampere proton, for D/He-3 fusion reaction and 4.2 x 10¹² (n/s) for D/T fusion reaction. The projected values of particles yield (neutrons and protons) are suitable for medical isotope productions on-site by a single unit without any change in the fusion vessel but only the fuel gas. The PET radiotracers are usually produced on-site by medical ion accelerator whereas Technetium-99m (Tc-99m) is usually produced off-site from the irradiation facilities of nuclear power plants. Typically, hospitals receive molybdenum-99 isotope container; the isotope decays to Tc-99mwith half-life time 2.75 days. Even though the projected current from IEMC is lesser than the proton current from the medical ion accelerator but still the IEMC vessel is simpler, and reduced in components and power consumption which add a new value of populating the PET radiotracers in most clinical centers. On the other hand, the projected neutrons flux from the IEMC is lesser than the thermal neutron flux at the irradiation facilities of nuclear power plants, but in the IEMC case the productions of Technetium-99m is suggested to be at the resonance region of which the resonance integral cross section is two orders of magnitude higher than the thermal flux. Thus it can be said the net activity from both is evened. Besides, the particle accelerator cannot be considered a multipurpose particles production unless a significant change is made to the accelerator to change from neutrons mode to protons mode or vice versa. In conclusion, the projected fusion yield from IEMC is a straightforward since slightly change in the primer IEC and ion source is required.

Keywords: electrostatic versus magnetic confinement fusion vessel, ion source, medical isotopes productions, neutron activation

Procedia PDF Downloads 332
556 Hybrid Beam-Forming Techniques for 6G Terahertz Communication: Challenges

Authors: Mridula Korde

Abstract:

The terahertz band is the main pillar of 6G wireless communication system. It is difficult to meet the high data rate of 1Tbps by millimeter frequency support systems. The terahertz band suffers huge propagation loss limiting wireless distance. Terahertz band imposes ultra massive multiple input multiple output antenna (UM-MIMO) systems which produce high array gain with narrow beamforming. The conventional methods for MIMO beamforming are Analog and Digital beamforming. The fully digital beamforming methods utilize dedicated structure of DAC/ADC and RF chains. These structures increase hardware complexity and are power hungry. The analog beamforming structures utilize ADC/DAC with phase shifters with less hardware complexity but support less data rates. As a result, a hybrid beamforming method can be adapted for UM-MIMO systems. This paper will investigate challenges in hybrid beamforming architecture which will address the low spatial degrees of freedom (SDoF) limitation in Terahertz (THz) Communication. The flexible hardware connections are proposed, in order to switch the system in an adaptive manner so as to minimize the power requirements.

Keywords: 6G, terahertz communication, beamforming, challenges

Procedia PDF Downloads 14