Search results for: Shambhu P. Adhikari
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 54

Search results for: Shambhu P. Adhikari

24 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 131
23 A Review on Future of Plant Based Medicine in Treatment of Urolithiatic Disorder

Authors: Gopal Lamichhane, Biswash Sapkota, Grinsun Sharma, Mahendra Adhikari

Abstract:

Urolithiasis is a condition in which insoluble or less soluble salts like oxalate, phosphate etc. precipitate in urinary tract and causes obstruction in ureter resulting renal colic or sometimes haematuria. It is the third most common disorder of urinary tract affecting nearly 2% of world’s population. Poor urinary drainage, microbial infection, oxalate and calcium containing diet, calciferol, hyperparathyroidism, cysteine in urine, gout, dysfunction of intestine, drought environment, lifestyle, exercise, stress etc. are risk factors for urolithiasis. Wide ranges of treatments are available in allopathic system of medicine but reoccurrence is unpreventable even with the surgical removal of stone or lithotripsy. So, people prefer alternative medicinal systems such as Unani, homeopathic, ayurvedic etc. systems of medicine due to their fewer side effects over allopathic counterpart. Different plants based ethnomedicines are being well established by their continuous effective use in human since long time in treatment of urinary problem. Many studies have scientifically proved those ethnomedicines for antiurolithiatic effect in animal and in vitro model. Plant-based remedies were found to be therapeutically effective for both prevention as well as cure of calcium oxalate urolithiasis. Plants were known to show these effects through a combination of many effects such as antioxidant, diuretic, hypocalciuric, urine alkalinizing effect in them. Berberine, triterpenoids, lupeol are the phytochemicals established for antiurolithiatic effect. Hence, plant-based medicine can be the effective herbal alternative as well as means of discovery of novel drug molecule for curing urolithiatic disorder and should be focused on further research to discover their value in coming future.

Keywords: urolithiasis, herbal medicine, ethnomedicine, kidney stone, calcium oxalate

Procedia PDF Downloads 272
22 Influence of Esports Marketing Strategies on Consumer Behavior: A Case Study of Valorant

Authors: Alex Arghya Adhikari

Abstract:

Gaming and esports industry is one of the biggest and fastest growing industries in the world. Globally people have started investing more in this industry since now people believe just like traditional sports, esports can also sustain their future. Last year in the month of December, the Indian government also recognised esports as an official sport but there has not been any positive initiative by the government in encouraging people to enter esports. This is a problem which cannot be overlooked since we are already in the digital age and gaming and esports is the future industry. There is a need for multiple effective marketing strategies by the game publishers to stabilize the esports in the country. Purpose: To observe the marketing-communication strategies that are implemented by Riot Games’ Valorant and how those strategies influence the consumer behavior and the esports of the game. Methodology: Activities over the internet related to the game like livestreams, discord chats, Instagram posts and YouTube videos over a period of two months have been collected through the Digital Ethnography. To support and validate the observations of the data collected, in-depth online interviews have been conducted which includes streamers, journalists, LAN experienced players and casual players. Findings: The game publisher through its Dynamic Competitive Gaming Experience and Community-Engaged Ecosystem succeeded in making the game a Recreational activity and a Community which goes beyond the In-game experiences which helped in understanding the impact of audience engagement on esports and the loopholes and setbacks of Indian esports. Conclusion: The study provides a comprehensive analysis of how Valorant's successful marketing and community engagement strategies have contributed to its global popularity and competitive esports environment. It highlights the various strategies employed by Riot Games to keep players engaged and connected, and also the challenges in the Indian esports landscape which differentiates it from the global competition.

Keywords: esports, valorant, marketing, consumer behaviour

Procedia PDF Downloads 68
21 The Use of Beneficial Microorganisms from Diverse Environments for the Management of Aflatoxin in Maize

Authors: Mathias Twizeyimana, Urmila Adhikari, Julius P. Sserumaga, David Ingham

Abstract:

The management of aflatoxins (naturally occurring toxins produced by certain fungi, most importantly Aspergillus flavus and A. parasiticus) relies mostly on the use of best cultural practices and, in some cases, the use of the biological control consisting of atoxigenic strains inhibiting the toxigenic strains through competition resulting in considerable toxin reduction. At AgBiome, we have built a core collection of over 100,000 fully sequenced microbes from diverse environments and employ both the microbes and their sequences in the discovery of new biological products for disease and pest control. The most common approach to finding beneficial microbes consists of isolating microorganisms from samples collected from diverse environments, selecting antagonistic strains through empirical screening, studying modes of action, and stabilization through the formulation of selected microbial isolates. A total of 608 diverse bacterial strains were screened using a high-throughput assay (48-well assay) to identify strains that inhibit toxigenic A. flavus growth on maize kernels. Active strains in 48-well assay had their pathogen inhibiting activity confirmed using the Flask Assay and were concurrently tested for their ability to reduce the aflatoxin content in maize grains. Strains with best growth inhibition and reduction of aflatoxin were tested in the greenhouse and field trials. From the field trials, three bacterial strains, AFS000009 (Pseudomonas chlororaphis), AFS032321 (Bacillus subtilis), AFS024683 (Bacillus velezensis), had aflatoxin concentrations (ppb) values that were significantly lower than those of inoculated control. The identification of biological products with high efficacy in inhibiting pathogen growth and eventually reducing the aflatoxin content will provide a valuable alternative to control strategies used in aflatoxin contamination management.

Keywords: aflatoxin, microorganism bacteria, biocontrol, beneficial microbes

Procedia PDF Downloads 180
20 Forest Policy and Its Implications on Private Forestry Development: A Case Study in Rautahat District, Nepal

Authors: Dammar Bahadur Adhikari

Abstract:

Community forestry in Nepal has got disproportionately high level of support from government and other actors in forestry sector. Even though master plan for forestry sector (1989) has highlighted community and private forestry as one component, the government policies and other intervention deliberately left out private forestry in its structure and programs. The study aimed at providing the pathway for formulating appropriate policies to address need of different kind of forest management regimes in Rautahat district, Nepal. The key areas the research focused were assessment of current status of private forestry, community forest users' understanding on private forestry; criteria for choosing species of private forestry and factors affecting establishment of private forestry in the area. Qualitative and quantitative data were collected employing questionnaire survey, rapid forest assessment and key informant interview. The study found out that forest policies are imposed due to intense pressure of exogenous forces than due to endogenous demand. Most of the local people opine that their traditional knowledge and skills are not sufficient for private forestry and hence need training on the matter. Likewise, local use, market value and rotation dictate the choice of species for plantation in private forests. Currently district forest office is the only government institution working in the area of private forestry all other governmental and non-governmental organizations have condoned. private forestry. Similarly, only permanent settlers in the area are found to establish private forests other forest users such as migrants and forest encroachers follow opportunistic behavior to meet their forest product need from community and national forests. In this regard, the study recommends taking appropriate step to support other forest management system including private forestry provide community forestry the benefits of competition as suggested by Darwin in 18th century, one and half century back and to help alleviate poverty by channelizing benefits to household level.

Keywords: community forest, forest management, poverty, private forest, users’ group

Procedia PDF Downloads 339
19 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 95
18 The Importance of Effectively Communicating Science and Economics to the Public (Layman)

Authors: Puran Prasad Adhikari

Abstract:

Considering the fact that when we are able to communicate science and economics effectively to broader nonprofessional audiences, it promotes a great understanding of its wider relevance to society and encourages more informed and confident decision-making at all levels, from the government to communities to individuals. The study has been conducted. This study is aimed to examine the understanding of the general public of economics and the basic sciences functioning in our surroundings in our day-to-day life. Data was gathered through historical documents related to science communication and through interviews with the public. The statistical result shows that there is a great lack of knowledge in the general public about the basic sciences and how economics impacts their life daily. The difficulties faced by the public include the view that these things can only be understood by professionals and it is beyond their capacity to grasp these concepts, the use of technical words and jargon by the professionals, and the lack of the medium to understand even if they want to learn it. The result further indicates that the lack of this basic knowledge also leads to bad decision-making, which causes frustration and anxiety. The result shows the great correlation between the confidence level of a person and the knowledge of basic science and economics. The factor behind this was the right decision-making capacity of the individual, which boosts the happy hormones of the individual. So indirectly, we found the correlation between mental health and the understanding of science and economics. The public wants to have a basic understanding and concepts of these topics, but they complain that there is no effective medium through which they can gain the understanding; the medium which is available is full of jargon and technical terms directed to professional and highly educated which they consider is beyond their reach. So, communicating the basic concepts to the general public is of great importance in the 21st century for the overall progress of society. The professional one can make this possible by considering the level of public understanding and making the communication and the programs comprehensible to the layman. Various means can be used to make this successful and effective, e.g., cartoon guide books, Q&A with the layman, animations use, and daily life examples. This study’s implication will help educators of high-level institutions and policymakers improve general public [layman] access to comprehensible knowledge.

Keywords: layman, comprehensible, decision making, frustration, confidence

Procedia PDF Downloads 74
17 Evaluation of Potential of Crop Residues for Energy Generation in Nepal

Authors: Narayan Prasad Adhikari

Abstract:

In Nepal, the crop residues have often been considered as one of the potential sources of energy to cope with prevailing energy crisis. However, the lack of systematic studies about production and various other competent uses of crop production is the main obstacle to evaluate net potential of the residues for energy production. Under this background, this study aims to assess the net annual availability of crop residues for energy production by undertaking three different districts with the representation of country’s three major regions of lowland, hill, and mountain. The five major cereal crops of paddy, wheat, maize, millet, and barley are considered for the analysis. The analysis is based upon two modes of household surveys. The first mode of survey is conducted to total of 240 households to obtain key information about crop harvesting and livestock management throughout a year. Similarly, the quantification of main crops along with the respective residues on fixed land is carried out to 45 households during second mode. The range of area of such fixed land is varied from 50 to 100 m2. The measurements have been done in air dry basis. The quantity for competitive uses of respective crop residues is measured on the basis of respondents’ feedback. There are four major competitive uses of crop residues at household which are building material, burning, selling, and livestock fodder. The results reveal that the net annual available crop residues per household are 4663 kg, 2513 kg, and 1731 kg in lowland, hill, and mountain respectively. Of total production of crop residues, the shares of dedicated fodder crop residues (except maize stalk and maize cob) are 94 %, 62 %, and 89 % in lowland, hill, and mountain respectively and of which the corresponding shares of fodder are 87 %, 91 %, and 82 %. The annual percapita energy equivalent from net available crop residues in lowland, hill, and mountain are 2.49 GJ, 3.42 GJ, and 0.44 GJ which represent 30 %, 33 %, and 3 % of total annual energy consumption respectively whereas the corresponding current shares of crop residues are only 23 %, 8 %, and 1 %. Hence, even utmost exploitation of available crop residues can hardly contribute to one third of energy consumption at household level in lowland, and hill whereas this is limited to particularly negligible in mountain. Moreover, further analysis has also been done to evaluate district wise supply-demand context of dedicated fodder crop residues on the basis of presence of livestock. The high deficit of fodder crop residues in hill and mountain is observed where the issue of energy generation from these residues will be ludicrous. As a contrary, the annual production of such residues for livestock fodder in lowland meets annual demand with modest surplus even if entire fodder to be derived from the residues throughout a year and thus there seems to be further potential to utilize the surplus residues for energy generation.

Keywords: crop residues, hill, lowland, mountain

Procedia PDF Downloads 470
16 Energy Storage Modelling for Power System Reliability and Environmental Compliance

Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari

Abstract:

Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.

Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation

Procedia PDF Downloads 130
15 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal

Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali

Abstract:

The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.

Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management

Procedia PDF Downloads 80
14 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal

Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota

Abstract:

This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.

Keywords: temperature, precipitation, water discharge, water balance, global warming

Procedia PDF Downloads 343
13 Quality of Life of Elderly and Factors Associated in Bharatpur Metropolitan City, Chitwan: A Mixed Method Study

Authors: Rubisha Adhikari, Rajani Shah

Abstract:

Introduction: Aging is a natural, global and inevitable phenomenon every single person has to go through, and nobody can escape the process. One of the emerging challenges to public health is to improve the quality of later years of life as life expectancy continues to increase. Quality of life (QoL) has grown to be a key goal for many public health initiatives. Population aging has become a global phenomenon as they are growing more quickly in emerging nations than they are in industrialized nations, leaving minimal opportunities to regulate the consequences of the demographic shift. Methods: A community-based descriptive analytical approach was used to examine the quality of life and associated factors among elderly people. A mixed method was chosen for the study. For the quantitative data collection, a household survey was conducted using the WHOQOL-OLD tool. In-depth interviews were conducted among twenty participants for qualitative data collection. Data generated through in-depth interviews were transcribed verbatim. In-depth interviews lasted about an hour and were audio recorded. The in-depth interview guide had been developed by the research team and pilot-tested before actual interviews. Results: This study result showed the association between quality of life and socio-demographic variables. Among all the variables under socio-demographic variable of this study, age (ꭓ2=14.445, p=0.001), gender (ꭓ2=14.323, p=<0.001), marital status (ꭓ2=10.816, p=0.001), education status (ꭓ2=23.948, p=<0.001), household income (ꭓ2=13.493, p=0.001), personal income (ꭓ2=14.129, p=0.001), source of personal income (ꭓ2=28.332,p=<0.001), social security allowance (ꭓ2=18.005,p=<0.001), alcohol consumption (ꭓ2=9.397,p=0.002) are significantly associated with quality of life of elderly. In addition, affordability (ꭓ2=12.088, p=0.001), physical activity (ꭓ2=9.314, p=0.002), emotional support (ꭓ2=9.122, p=0.003), and economic support (ꭓ2=8.104, p=0.004) are associated with quality of life of elderly people. Conclusion: In conclusion, this mixed method study provides insight into the attributes of the quality of life of elderly people in Nepal and similar settings. As the geriatric population is growing in full swing, maintaining a high quality of life has become a major challenge. This study showed that determinants such as age, gender, marital status, education status, household income, personal income, source of personal income, social security allowance and alcohol consumption, economic support, emotional support, affordability and physical activity have an association with quality of life of the elderly.

Keywords: ageing, chitwan, elderly, health status, quality of life

Procedia PDF Downloads 67
12 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 97
11 The Effects of Stoke's Drag, Electrostatic Force and Charge on Penetration of Nanoparticles through N95 Respirators

Authors: Jacob Schwartz, Maxim Durach, Aniruddha Mitra, Abbas Rashidi, Glen Sage, Atin Adhikari

Abstract:

NIOSH (National Institute for Occupational Safety and Health) approved N95 respirators are commonly used by workers in construction sites where there is a large amount of dust being produced from sawing, grinding, blasting, welding, etc., both electrostatically charged and not. A significant portion of airborne particles in construction sites could be nanoparticles created beside coarse particles. The penetration of the particles through the masks may differ depending on the size and charge of the individual particle. In field experiments relevant to this current study, we found that nanoparticles of medium size ranges are penetrating more frequently than nanoparticles of smaller and larger sizes. For example, penetration percentages of nanoparticles of 11.5 – 27.4 nm into a sealed N95 respirator on a manikin head ranged from 0.59 to 6.59%, whereas nanoparticles of 36.5 – 86.6 nm ranged from 7.34 to 16.04%. The possible causes behind this increased penetration of mid-size nanoparticles through mask filters are not yet explored. The objective of this study is to identify causes behind this unusual behavior of mid-size nanoparticles. We have considered such physical factors as Boltzmann distribution of the particles in thermal equilibrium with the air, kinetic energy of the particles at impact on the mask, Stoke’s drag force, and electrostatic forces in the mask stopping the particles. When the particles collide with the mask, only the particles that have enough kinetic energy to overcome the energy loss due to the electrostatic forces and the Stokes’ drag in the mask can pass through the mask. To understand this process, the following assumptions were made: (1) the effect of Stoke’s drag depends on the particles’ velocity at entry into the mask; (2) the electrostatic force is proportional to the charge on the particles, which in turn is proportional to the surface area of the particles; (3) the general dependence on electrostatic charge and thickness means that for stronger electrostatic resistance in the masks and thicker the masks’ fiber layers the penetration of particles is reduced, which is a sensible conclusion. In sampling situations where one mask was soaked in alcohol eliminating electrostatic interaction the penetration was much larger in the mid-range than the same mask with electrostatic interaction. The smaller nanoparticles showed almost zero penetration most likely because of the small kinetic energy, while the larger sized nanoparticles showed almost negligible penetration most likely due to the interaction of the particle with its own drag force. If there is no electrostatic force the fraction for larger particles grows. But if the electrostatic force is added the fraction for larger particles goes down, so diminished penetration for larger particles should be due to increased electrostatic repulsion, may be due to increased surface area and therefore larger charge on average. We have also explored the effect of ambient temperature on nanoparticle penetrations and determined that the dependence of the penetration of particles on the temperature is weak in the range of temperatures in the measurements 37-42°C, since the factor changes in the range from 3.17 10-3K-1 to 3.22 10-3K-1.

Keywords: respiratory protection, industrial hygiene, aerosol, electrostatic force

Procedia PDF Downloads 193
10 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí

Abstract:

A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.

Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding

Procedia PDF Downloads 94
9 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy

Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed

Abstract:

This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.

Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states

Procedia PDF Downloads 293
8 Single Centre Retrospective Analysis of MR Imaging in Placenta Accreta Spectrum Disorder with Histopathological Correlation

Authors: Frank Dorrian, Aniket Adhikari

Abstract:

The placenta accreta spectrum (PAS), which includes placenta accreta, increta, and percreta, is characterized by the abnormal implantation of placental chorionic villi beyond the decidua basalis. Key risk factors include placenta previa, prior cesarean sections, advanced maternal age, uterine surgeries, multiparity, pelvic radiation, and in vitro fertilization (IVF). The incidence of PAS has increased tenfold over the past 50 years, largely due to rising cesarean rates. PAS is associated with significant peripartum and postpartum hemorrhage. Magnetic resonance imaging (MRI) and ultrasound assist in the evaluation of PAS, enabling a multidisciplinary approach to mitigate morbidity and mortality. This study retrospectively analyzed PAS cases at Royal Prince Alfred Hospital, Sydney, Australia. Using the SAR-ESUR joint consensus statement, seven imaging signs were reassessed for their sensitivity and specificity in predicting PAS, with histopathological correlation. The standardized MRI protocols for PAS at the institution were also reviewed. Data were collected from the picture archiving and communication system (PACS) records from 2010 to July 2024, focusing on cases where MR imaging and confirmed histopathology or operative notes were available. This single-center, observational study provides insights into the reliability of MRI for PAS detection and the optimization of imaging protocols for accurate diagnosis. The findings demonstrate that intraplacental dark bands serve as highly sensitive markers for diagnosing PAS, achieving sensitivities of 88.9%, 85.7%, and 100% for placenta accreta, increta, and percreta, respectively, with a combined specificity of 42.9%. Sensitivity for abnormal vascularization was lower (33.3%, 28.6%, and 50%), with a specificity of 57.1%. The placenta bulge exhibited sensitivities of 55.5%, 57.1%, and 100%, with a specificity of 57.1%. Loss of the T2 hypointense interface had sensitivities of 66.6%, 85.7%, and 100%, with 42.9% specificity. Myometrial thinning showed high sensitivity across PAS conditions (88.9%, 71.4%, and 100%) and a specificity of 57.1%. Bladder wall thinning was sensitive only for placenta percreta (50%) but had a specificity of 100%. Focal exophytic mass displayed variable sensitivity (22.9%, 42.9%, and 100%) with a specificity of 85.7%. These results highlight the diagnostic variability among markers, with intraplacental dark bands and myometrial thinning being useful in detecting abnormal placentation, though they lack high specificity. The literature and the results of our study highlight that while no single feature can definitively diagnose PAS, the presence of multiple features -especially when combined with elevated clinical risk- significantly increases the likelihood of an underlying PAS. A thorough understanding of the range of MRI findings associated with PAS, along with awareness of the clinical significance of each sign, helps the radiologist more accurately diagnose the condition and assist in surgical planning, ultimately improving patient care.

Keywords: placenta, accreta, spectrum, MRI

Procedia PDF Downloads 4
7 Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal

Authors: Kalpana Adhikari, Mandip Subedi, Keshab Sharma, Indra P. Acharya

Abstract:

The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley.

Keywords: factor of safety, geotechnical investigation, liquefaction, Nepal earthquake

Procedia PDF Downloads 322
6 Nanoparticle Exposure Levels in Indoor and Outdoor Demolition Sites

Authors: Aniruddha Mitra, Abbas Rashidi, Shane Lewis, Jefferson Doehling, Alexis Pawlak, Jacob Schwartz, Imaobong Ekpo, Atin Adhikari

Abstract:

Working or living close to demolition sites can increase risks of dust-related health problems. Demolition of concrete buildings may produce crystalline silica dust, which can be associated with a broad range of respiratory diseases including silicosis and lung cancers. Previous studies demonstrated significant associations between demolition dust exposure and increase in the incidence of mesothelioma or asbestos cancer. Dust is a generic term used for minute solid particles of typically <500 µm in diameter. Dust particles in demolition sites vary in a wide range of sizes. Larger particles tend to settle down from the air. On the other hand, the smaller and lighter solid particles remain dispersed in the air for a long period and pose sustained exposure risks. Submicron ultrafine particles and nanoparticles are respirable deeper into our alveoli beyond our body’s natural respiratory cleaning mechanisms such as cilia and mucous membranes and are likely to be retained in the lower airways. To our knowledge, how various demolition tasks release nanoparticles are largely unknown and previous studies mostly focused on course dust, PM2.5, and PM10. General belief is that the dust generated during demolition tasks are mostly large particles formed through crushing, grinding, or sawing of various concrete and wooden structures. Therefore, little consideration has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor, which was used for nanoparticle monitoring at two adjacent indoor and outdoor building demolition sites in southern Georgia. Nanoparticle levels were measured (n = 10) by TSI NanoScan SMPS Model 3910 at four different distances (5, 10, 15, and 30 m) from the work location as well as in control sites. Temperature and relative humidity levels were recorded. Indoor demolition works included acetylene torch, masonry drilling, ceiling panel removal, and other miscellaneous tasks. Whereas, outdoor demolition works included acetylene torch and skid-steer loader use to remove a HVAC system. Concentration ranges of nanoparticles of 13 particle sizes at the indoor demolition site were: 11.5 nm: 63 – 1054/cm³; 15.4 nm: 170 – 1690/cm³; 20.5 nm: 321 – 730/cm³; 27.4 nm: 740 – 3255/cm³; 36.5 nm: 1,220 – 17,828/cm³; 48.7 nm: 1,993 – 40,465/cm³; 64.9 nm: 2,848 – 58,910/cm³; 86.6 nm: 3,722 – 62,040/cm³; 115.5 nm: 3,732 – 46,786/cm³; 154 nm: 3,022 – 21,506/cm³; 205.4 nm: 12 – 15,482/cm³; 273.8 nm: Keywords: demolition dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 422
5 Scaling up Small and Sick Newborn Care Through the Establishment of the First Human Milk Bank in Nepal

Authors: Prajwal Paudel, Shreeprasad Adhikari, Shailendra Bir Karmacharya, Kalpana Upadhyaya

Abstract:

Background: Human milk banks have been recommended by the World Health Organization (WHO) for newborn and child nourishment in the provision of optimum nutrition as an alternative to breastfeeding in circumstances when direct breastfeeding is inaccessible. The vulnerable group of babies, mainly preterm, low birth weight, and sick newborns, are at a greater risk of mortality and possibly benefit from the safe use of donated human milk through milk banks. In this study, we aimed to shed light on the process involved during the setting up of the nation’s first milk bank and its vitality in small and sick newborn nutrition and care. Methods: The study was conducted in Paropakar Maternity and Women’s Hospital, where the first human milk (HMB) was established. The establishment involved a stepwise process of need assessment meeting, formation of the HMB committee, learning visit to HMB in India, studying the strengths and weaknesses of promoting breastfeeding and HMB system integration, procurement, installation, and setting up the infrastructure, and developing technical competency, launching of the HMB. After the initiation of HMB services, information regarding the recruited donor mothers and the volume of milk pasteurized and consumed by the needy recipient babies were recorded. Descriptive statistics with frequencies and percentages were used to describe the utilization of HMB services. Results: During the study period, a total of 506113 ml of milk was collected, while 49930 ml of milk was pasteurized. Of the pasteurized milk, 381248 ml of milk was dispensed. The total volume of milk received was from a total of 883 after proper routine screening tests. Similarly, the total number of babies who received the donated human milk (DHM) was 912 with different neonatal conditions. Among the babies who received DHM, 527(57.7%) were born via CS, and 385 (42.21%) were delivered normally. In the birth weight category,9 (1%) of the babies were less than 1000 grams, 75 (8.2%) were less than 1500 grams, 405 (44.4%) were between 1500 to less than 2500 grams whereas, 423 (46.4%) of the babies who received DHM were normal weight babies. Among the sick newborns, perinatal asphyxia accounted for 166 (18.2%), preterm with other complications 372 (40.7%), preterm 23 (2.02%), respiratory distress 140 (15.35%), neonatal jaundice 150 (16.44%), sepsis 94 (10.30%), meconium aspiration syndrome 9(1%), seizure disorder 28 (3.07%), congenital anomalies 13 (1.42%) and others 33(3. 61%). The neonatal mortality rate dropped to 6.2/1000 live births from 7.5/1000 live births in the first year of establishment as compared to the previous year. Conclusion: The establishment of the first HMB in Nepal involved a comprehensive approach to integrate a new system with the existing newborn care in the provision of safe DHM. Premature babies with complication, babies born via CS, perinatal asphyxia and babies with sepsis consumed the greater proportion of DHM. Rigorous research is warranted to assess the impact of DHM in small and sick newborn who otherwise would be fed formula milk.

Keywords: human milk bank, sick-newborn, mortality, neonatal nutrition

Procedia PDF Downloads 8
4 Wood Dust and Nanoparticle Exposure among Workers during a New Building Construction

Authors: Atin Adhikari, Aniruddha Mitra, Abbas Rashidi, Imaobong Ekpo, Jefferson Doehling, Alexis Pawlak, Shane Lewis, Jacob Schwartz

Abstract:

Building constructions in the US involve numerous wooden structures. Woods are routinely used in walls, framing floors, framing stairs, and making of landings in building constructions. Cross-laminated timbers are currently being used as construction materials for tall buildings. Numerous workers are involved in these timber based constructions, and wood dust is one of the most common occupational exposures for them. Wood dust is a complex substance composed of cellulose, polyoses and other substances. According to US OSHA, exposure to wood dust is associated with a variety of adverse health effects among workers, including dermatitis, allergic respiratory effects, mucosal and nonallergic respiratory effects, and cancers. The amount and size of particles released as wood dust differ according to the operations performed on woods. For example, shattering of wood during sanding operations produces finer particles than does chipping in sawing and milling industries. To our knowledge, how shattering, cutting and sanding of woods and wood slabs during new building construction release fine particles and nanoparticles are largely unknown. General belief is that the dust generated during timber cutting and sanding tasks are mostly large particles. Consequently, little attention has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor and conventional particle counters. This study was conducted in a large new building construction site in southern Georgia primarily during the framing of wooden side walls, inner partition walls, and landings. Exposure levels of nanoparticles (n = 10) were measured by a newly developed nanoparticle counter (TSI NanoScan SMPS Model 3910) at four different distances (5, 10, 15, and 30 m) from the work location. Other airborne particles (number of particles/m3) including PM2.5 and PM10 were monitored using a 6-channel (0.3, 0.5, 1.0, 2.5, 5.0 and 10 µm) particle counter at 15 m, 30 m, and 75 m distances at both upwind and downwind directions. Mass concentration of PM2.5 and PM10 (µg/m³) were measured by using a DustTrak Aerosol Monitor. Temperature and relative humidity levels were recorded. Wind velocity was measured by a hot wire anemometer. Concentration ranges of nanoparticles of 13 particle sizes were: 11.5 nm: 221 – 816/cm³; 15.4 nm: 696 – 1735/cm³; 20.5 nm: 879 – 1957/cm³; 27.4 nm: 1164 – 2903/cm³; 36.5 nm: 1138 – 2640/cm³; 48.7 nm: 938 – 1650/cm³; 64.9 nm: 759 – 1284/cm³; 86.6 nm: 705 – 1019/cm³; 115.5 nm: 494 – 1031/cm³; 154 nm: 417 – 806/cm³; 205.4 nm: 240 – 471/cm³; 273.8 nm: 45 – 92/cm³; and 365.2 nm: Keywords: wood dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 185
3 Non-Timber Forest Products and Livelihood Linkages: A Case of Lamabagar, Nepal

Authors: Sandhya Rijal, Saroj Adhikari, Ramesh R. Pant

Abstract:

Non-Timber Forest Products (NTFPs) have attracted substantial interest in the recent years with the increasing recognition that these can provide essential community needs for improved and diversified rural livelihood and support the objectives of biodiversity conservation. Nevertheless, various challenges are witnessed in their sustainable harvest and management. Assuming that sustainable management with community stewardship can offer one of the solutions to existing challenges, the study assesses the linkages between NTFPs and rural livelihood in Lamabagar village of Dolakha, Nepal. The major objective was to document the status of NTFPs and their contributions in households of Lamabagar. For status documentation, vegetation sampling was done using systematic random sampling technique. 30 plots of 10 m × 10 m were laid down in six parallel transect lines at horizontal distance of 160 m in two different community forests. A structured questionnaire survey was conducted in 76 households (excluding non-response rate) using stratified random sampling technique for contribution analysis. Likewise, key informant interview and focus group discussions were also conducted for data triangulations. 36 different NTFPs were recorded from the vegetation sample in two community forests of which 50% were used for medicinal purposes. The other uses include fodder, religious value, and edible fruits and vegetables. Species like Juniperus indica, Daphne bholua Aconitum spicatum, and Lyonia ovalifolia were frequently used for trade as a source of income, which was sold in local market. The protected species like Taxus wallichiana and Neopicrorhiza scrophulariiflora were also recorded in the area for which the trade is prohibited. The protection of these species urgently needs community stewardship. More than half of the surveyed households (55%) were depending on NTFPs for their daily uses, other than economic purpose whereas 45% of them sold those products in the market directly or in the form of local handmade products as a source of livelihood. NTFPs were the major source of primary health curing agents especially for the poor and unemployed people in the study area. Hence, the NTFPs contributed to livelihood under three different categories: subsistence, supplement income and emergency support, depending upon the economic status of the households. Although the status of forest improved after handover to the user group, the availability of valuable medicinal herbs like Rhododendron anthopogon, Swertia nervosa, Neopicrorhiza scrophulariiflora, and Aconitum spicatum were declining. Inadequacy of technology, lack of easy transport access, and absence of good market facility were the major limitations for external trade of NTFPs in the study site. It was observed that people were interested towards conservation only if they could get some returns: economic in terms of rural settlements. Thus, the study concludes that NTFPs could contribute rural livelihood and support conservation objectives only if local communities are provided with the easy access of technology, market and capital.

Keywords: contribution, medicinal, subsistence, sustainable harvest

Procedia PDF Downloads 125
2 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 310
1 Challenges for Reconstruction: A Case Study from 2015 Gorkha, Nepal Earthquake

Authors: Hari K. Adhikari, Keshab Sharma, K. C. Apil

Abstract:

The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 hit the central region of Nepal on April 25, 2015; with the epicenter about 77 km northwest of Kathmandu Valley. This paper aims to explore challenges of reconstruction in the rural earthquake-stricken areas of Nepal. The Gorkha earthquake on April 25, 2015, has significantly affected the livelihood of people and overall economy in Nepal, causing severe damage and destruction in central Nepal including nation’s capital. A larger part of the earthquake affected area is difficult to access with rugged terrain and scattered settlements, which posed unique challenges and efforts on a massive scale reconstruction and rehabilitation. 800 thousand buildings were affected leaving 8 million people homeless. Challenge of reconstruction of optimum 800 thousand houses is arduous for Nepal in the background of its turmoil political scenario and weak governance. With significant actors involved in the reconstruction process, no appreciable relief has reached to the ground, which is reflected over the frustration of affected people. The 2015 Gorkha earthquake is one of most devastating disasters in the modern history of Nepal. Best of our knowledge, there is no comprehensive study on reconstruction after disasters in modern Nepal, which integrates the necessary information to deal with challenges and opportunities of reconstructions. The study was conducted using qualitative content analysis method. Thirty engineers and ten social mobilizes working for reconstruction and more than hundreds local social workers, local party leaders, and earthquake victims were selected arbitrarily. Information was collected through semi-structured interviews and open-ended questions, focus group discussions, and field notes, with no previous assumption. Author also reviewed literature and document reviews covering academic and practitioner studies on challenges of reconstruction after earthquake in developing countries such as 2001 Gujarat earthquake, 2005 Kashmir earthquake, 2003 Bam earthquake and 2010 Haiti earthquake; which have very similar building typologies, economic, political, geographical, and geological conditions with Nepal. Secondary data was collected from reports, action plans, and reflection papers of governmental entities, non-governmental organizations, private sector businesses, and the online news. This study concludes that inaccessibility, absence of local government, weak governance, weak infrastructures, lack of preparedness, knowledge gap and manpower shortage, etc. are the key challenges of the reconstruction after 2015 earthquake in Nepal. After scrutinizing different challenges and issues, study counsels that good governance, integrated information, addressing technical issues, public participation along with short term and long term strategies to tackle with technical issues are some crucial factors for timely and quality reconstruction in context of Nepal. Sample collected for this study is relatively small sample size and may not be fully representative of the stakeholders involved in reconstruction. However, the key findings of this study are ones that need to be recognized by academics, governments, and implementation agencies, and considered in the implementation of post-disaster reconstruction program in developing countries.

Keywords: Gorkha earthquake, reconstruction, challenges, policy

Procedia PDF Downloads 407