Search results for: Ignacio Bravo
14 Sustainability and Cultural Preservation: Lessons from the Tourism Industry in Bali and Guam
Authors: Briante Barretto, Haley Carreon, Anesha-Maelene Ignacio
Abstract:
This research paper explores the dynamic process of cultural resilience within the context of the modern tourism of two traditional island communities (Bali, Indonesia and Guam, Micronesia). It asks the question: How do indigenous people hold on to their foundational values that define their culture while moving forward in the modern world? Both Bali and Guam serve as famous destinations for tourists from all over the world, with millions of visitors on an annual basis. Both are continually being shaped in profound ways by the forces of modernity through globalization. And both are demonstrating cultural resilience while striving to find creative ways to sustain, preserve and strengthen their values and traditions within the context of a thriving modern tourist economy. This research paper, drawing on ethnographic methodologies, and in particular participant observation and in-depth interviews, explores the many challenges both communities face and the strategies and approaches they are learning to employ that help promote sustainable tourism while contributing to cultural preservation. Drawing on the insights gained from field work in both island communities, as well as the growing literature in this field study, the paper posits important lessons that can guide and inform indigenous communities that are being drawn into the global tourism market. One powerful idea emerges in the research and one that seems to guide and shape tourism policy both indigenous communities - that this current generation should be thought of as the ancestors of future generations, and thus they have a weighty responsibility to continue to learn and strive to sustain and preserve their cultures and traditions, their natural environments, and spiritual foundations for the future.Keywords: bali, culture, environment, guam, tourism, values
Procedia PDF Downloads 7013 The Conceptualization of Patient-Centered Care in Latin America: A Scoping Review
Authors: Anne Klimesch, Alejandra Martinez, Martin HäRter, Isabelle Scholl, Paulina Bravo
Abstract:
Patient-centered care (PCC) is a key principle of high-quality healthcare. In Latin America, research on and promotion of PCC have taken place in the past. However, thorough implementation of PCC in practice is still missing. In Germany, an integrative model of patient-centeredness has been developed by synthesis of diverse concepts of PCC. The model could serve as a point of reference for further research on the implementation of PCC. However, it is predominantly based on research from Europe and North America. This scoping review, therefore, aims to accumulate research on PCC in Latin America in the past 15 years and analyse how PCC has been conceptualized. The resulting overview of PCC in Latin America will be a foundation for a subsequent study aiming at the adaptation of the integrative model of patient-centeredness to the Latin American health care context. Scientific databases (MEDLINE, EMBASE, PsycINFO, CINAHL, Scopus, Web of Science, SCIELO, Redalyc.) will be searched, and reference and citation tracking will be performed. Studies will be included if they were carried out in Latin America, investigated PCC in any clinical and community setting (public and private), and were published in English, Spanish, French, or Portuguese since 2006. Furthermore, any theoretical framework or conceptual model to guide how PCC is conceptualized in Latin America will be included. Two reviewers will be responsible for the identification of articles, screening of records, and full-text assessment. The results of the scoping review will be used in the development of a mixed-methods study with the aim to understand the needs for PCC, as well as barriers and facilitators in Latin America. Based on the outcomes, the integrative model of PCC will be translated to Spanish and adapted to the Latin American context. The integrative model will enable the dissemination of the concept of PCC in Latin America and will provide a common ground for further research on the topic. The project will thereby make an important contribution to an evidence-based implementation of PCC in Latin America.Keywords: conceptual framework, integrative model of PCC, Latin America, patient-centered care
Procedia PDF Downloads 20012 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 20811 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima
Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano
Abstract:
In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time
Procedia PDF Downloads 17310 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane
Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua
Abstract:
Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability
Procedia PDF Downloads 3239 Informal Green Infrastructure as Mobility Enabler in Informal Settlements of Quito
Authors: Ignacio W. Loor
Abstract:
In the context of informal settlements in Quito, this paper provides evidence that slopes and deep ravines typical of Andean cities, around which marginalized urban communities sit, constitute a platform for green infrastructure that supports mobility for pedestrians in an incremental fashion. This is informally shaped green infrastructure that provides connectivity to other mobility infrastructures such as roads and public transport, which permits relegated dwellers reach their daily destinations and reclaim their rights to the city. This is relevant in that walking has been increasingly neglected as a viable mean of transport in Latin American cities, in favor of rather motorized means, for which the mobility benefits of green infrastructure have remained invisible to policymakers, contributing to the progressive isolation of informal settlements. This research leverages greatly on an ecological rejuvenation programme led by the municipality of Quito and the Andean Corporation for Development (CAN) intended for rehabilitating the ecological functionalities of ravines. Accordingly, four ravines in different stages of rejuvenation were chosen, in order to through ethnographic methods, capture the practices they support to dwellers of informal settlements across different stages, particularly in terms of issues of mobility. Then, by presenting fragments of interviews, description of observed phenomena, photographs and narratives published in institutional reports and media, the production process of mobility infrastructure over unoccupied slopes and ravines, and the roles that this infrastructure plays in the mobility of dwellers and their quotidian practices are explained. For informal settlements, which normally feature scant urban infrastructure, mobility embodies an unfavourable driver for the possibilities of dwellers to actively participate in the social, economic and political dimensions of the city, for which their rights to the city are widely neglected. Nevertheless, informal green infrastructure for mobility provides some alleviation. This infrastructure is incremental, since its features and usability gradually evolves as users put into it knowledge, labour, devices, and connectivity to other infrastructures in different dimensions which increment its dependability. This is evidenced in the diffusion of knowledge of trails and routes of footpaths among users, the implementation of linking stairs and bridges, the improved access by producing public spaces adjacent to the ravines, the illuminating of surrounding roads, and ultimately, the restoring of ecological functions of ravines. However, the perpetuity of this type of infrastructure is also fragile and vulnerable to the course of urbanisation, densification, and expansion of gated privatised spaces.Keywords: green infrastructure, informal settlements, urban mobility, walkability
Procedia PDF Downloads 1648 The Production of Reinforced Insulation Bricks out of the Concentration of Ganoderma lucidum Fungal Inoculums and Cement Paste
Authors: Jovie Esquivias Nicolas, Ron Aldrin Lontoc Austria, Crisabelle Belleza Bautista, Mariane Chiho Espinosa Bundalian, Owwen Kervy Del Rosario Castillo, Mary Angelyn Mercado Dela Cruz, Heinrich Theraja Recana De Luna, Chriscell Gipanao Eustaquio, Desiree Laine Lauz Gilbas, Jordan Ignacio Legaspi, Larah Denise David Madrid, Charles Linelle Malapote Mendoza, Hazel Maxine Manalad Reyes, Carl Justine Nabora Saberdo, Claire Mae Rendon Santos
Abstract:
In response to the global race in discovering the next advanced sustainable material that will reduce our ecological footprint, the researchers aimed to create a masonry unit which is competent in physical edifices and other constructional facets. From different proven researches, mycelium has been concluded that when dried can be used as a robust and waterproof building material that can be grown into explicit forms, thus reducing the processing requirements. Hypothesizing inclusive measures to attest fungi’s impressive structural qualities and absorbency, the researchers projected to perform comparative analyses in creating mycelium bricks from mushroom spores of G. lucidum. Three treatments were intended to classify the most ideal concentration of clay and substrate fixings. The substrate bags fixed with 30% clay and 70% mixings indicated highest numerical frequencies in terms of full occupation of fungal mycelia. Subsequently, sorted parts of white portions from the treatment were settled in a thermoplastic mold and burnt. Three proportional concentrations of cultivated substrate and cement were also prioritized to gather results of variation focused on the weights of the bricks in the Water Absorption Test and Durability Test. Fungal inoculums with solutions of cement showed small to moderate amounts of decrease and increase in load. This proves that the treatments did not show any significant difference when it comes to strength, efficiency and absorption capacity. Each of the concentration is equally valid and could be used in supporting the worldwide demands of creating numerous bricks while also taking into consideration the recovery of our nature.Keywords: mycelium, fungi, fungal mycelia, durability test, water absorption test
Procedia PDF Downloads 1357 Life Cycle Assessment to Study the Acidification and Eutrophication Impacts of Sweet Cherry Production
Authors: G. Bravo, D. Lopez, A. Iriarte
Abstract:
Several organizations and governments have created a demand for information about the environmental impacts of agricultural products. Today, the export oriented fruit sector in Chile is being challenged to quantify and reduce their environmental impacts. Chile is the largest southern hemisphere producer and exporter of sweet cherry fruit. Chilean sweet cherry production reached a volume of 80,000 tons in 2012. The main destination market for the Chilean cherry in 2012 was Asia (including Hong Kong and China), taking in 69% of exported volume. Another important market was the United States with 16% participation, followed by Latin America (7%) and Europe (6%). Concerning geographical distribution, the Chilean conventional cherry production is focused in the center-south area, between the regions of Maule and O’Higgins; both regions represent 81% of the planted surface. The Life Cycle Assessment (LCA) is widely accepted as one of the major methodologies for assessing environmental impacts of products or services. The LCA identifies the material, energy, material, and waste flows of a product or service, and their impact on the environment. There are scant studies that examine the impacts of sweet cherry cultivation, such as acidification and eutrophication. Within this context, the main objective of this study is to evaluate, using the LCA, the acidification and eutrophication impacts of sweet cherry production in Chile. The additional objective is to identify the agricultural inputs that contributed significantly to the impacts of this fruit. The system under study included all the life cycle stages from the cradle to the farm gate (harvested sweet cherry). The data of sweet cherry production correspond to nationwide representative practices and are based on technical-economic studies and field information obtained in several face-to-face interviews. The study takes into account the following agricultural inputs: fertilizers, pesticides, diesel consumption for agricultural operations, machinery and electricity for irrigation. The results indicated that the mineral fertilizers are the most important contributors to the acidification and eutrophication impacts of the sheet cherry cultivation. Improvement options are suggested for the hotspot in order to reduce the environmental impacts. The results allow planning and promoting low impacts procedures across fruit companies, as well as policymakers, and other stakeholders on the subject. In this context, this study is one of the first assessments of the environmental impacts of sweet cherry production. New field data or evaluation of other life cycle stages could further improve the knowledge on the impacts of this fruit. This study may contribute to environmental information in other countries where there is similar agricultural production for sweet cherry.Keywords: acidification, eutrophication, life cycle assessment, sweet cherry production
Procedia PDF Downloads 2716 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite
Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero
Abstract:
The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.Keywords: belite, silica fume, zeolite, hydraulic reactivity
Procedia PDF Downloads 3445 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 234 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements
Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga
Abstract:
Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform
Procedia PDF Downloads 3863 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 302 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 231 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer
Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller
Abstract:
Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine
Procedia PDF Downloads 115