Search results for: consumer data right
20076 The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach
Authors: Xizhen Zhou, Yanjie Ji
Abstract:
The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities.Keywords: charging decision, trajectory, electric vehicle, infrastructure, mixed logit
Procedia PDF Downloads 7120075 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock
Authors: Tumisang Seodigeng, Hilary Rutto
Abstract:
In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten
Procedia PDF Downloads 49720074 Shaft Friction of Bored Pile Socketed in Weathered Limestone in Qatar
Authors: Thanawat Chuleekiat
Abstract:
Socketing of bored piles in rock is always seen as a matter of debate on construction sites between consultants and contractors. The socketing depth normally depends on the type of rock, depth at which the rock is available below the pile cap and load carrying capacity of the pile. In this paper, the review of field load test data of drilled shaft socketed in weathered limestone conducted using conventional static pile load test and dynamic pile load test was made to evaluate a unit shaft friction for the bored piles socketed in weathered limestone (weak rock). The borehole drilling data were also reviewed in conjunction with the pile test result. In addition, the back-calculated unit shaft friction was reviewed against various empirical methods for bored piles socketed in weak rock. The paper concludes with an estimated ultimate unit shaft friction from the case study in Qatar for preliminary design.Keywords: piled foundation, weathered limestone, shaft friction, rock socket, pile load test
Procedia PDF Downloads 18020073 Implementation of a Non-Poissonian Model in a Low-Seismicity Area
Authors: Ludivine Saint-Mard, Masato Nakajima, Gloria Senfaute
Abstract:
In areas with low to moderate seismicity, the probabilistic seismic hazard analysis frequently uses a Poisson approach, which assumes independence in time and space of events to determine the annual probability of earthquake occurrence. Nevertheless, in countries with high seismic rate, such as Japan, it is frequently use non-poissonian model which assumes that next earthquake occurrence depends on the date of previous one. The objective of this paper is to apply a non-poissonian models in a region of low to moderate seismicity to get a feedback on the following questions: can we overcome the lack of data to determine some key parameters?, and can we deal with uncertainties to apply largely this methodology on an industrial context?. The Brownian-Passage-Time model was applied to a fault located in France and conclude that even if the lack of data can be overcome with some calculations, the amount of uncertainties and number of scenarios leads to a numerous branches in PSHA, making this method difficult to apply on a large scale of low to moderate seismicity areas and in an industrial context.Keywords: probabilistic seismic hazard, non-poissonian model, earthquake occurrence, low seismicity
Procedia PDF Downloads 6220072 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data
Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos
Abstract:
Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia
Procedia PDF Downloads 2220071 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective
Authors: Hoa Pham
Abstract:
The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.Keywords: codeswitching, L1 use, L2 teaching, learners’ perception
Procedia PDF Downloads 32420070 Galvinising Higher Education Institutions as Creative, Humanised and Innovative Environments
Authors: A. Martins, I. Martins, O. Pereira
Abstract:
The purpose of this research is to focus on the importance of distributed leadership in universities and Higher Education Institutions (HEIs). The research question is whether there a significant finding in self-reported ratings of leadership styles of those respondents that are studying management. The study aims to further discover whether students are encouraged to become responsible and proactive citizens, to develop their skills set, specifically shared leadership and higher-level skills to inspire creation knowledge, sharing and distribution thereof. Contemporary organizations need active and responsible individuals who are capable to make decisions swiftly and responsibly. Leadership influences innovative results and education play a dynamic role in preparing graduates. Critical reflection of extant literature indicates a need for a culture of leadership and innovation to promote organizational sustainability in the globalised world. This study debates the need for HEIs to prepare the graduate for both organizations and society as a whole. This active collaboration should be the very essence of both universities and the industry in order for these to achieve responsible sustainability. Learning and innovation further depend on leadership efficacy. This study follows the pragmatic paradigm methodology. Primary data collection is currently being gathered via the web-based questionnaire link which was made available on the UKZN notice system. The questionnaire has 35 items with a Likert scale of five response options. The purposeful sample method was used, and the population entails the undergraduate and postgraduate students in the College of Law and Business, University of KwaZulu-Natal, South Africa. Limitations include the design of the study and the reliance on the quantitative data as the only method of primary data collection. This study is of added value for scholars and organizations in the innovation economy.Keywords: knowledge creation, learning, performance, sustainability
Procedia PDF Downloads 28720069 Multi-Label Approach to Facilitate Test Automation Based on Historical Data
Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally
Abstract:
The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.Keywords: machine learning, multi-class, multi-label, supervised learning, test automation
Procedia PDF Downloads 13220068 Encounters of English First Additional Language Teachers in Rural Schools
Authors: Rendani Mercy Makhwathana
Abstract:
This paper intends to explore teachers' encounters when teaching English First Additional Language in rural public schools. Teachers are pillars of any education system around the globe. Educational transformations hinge on them as critical role players in the education system. Thus, teachers' encounters are worth consideration, for they impact learners' learning and the well-being of education in general. An exploratory qualitative approach was used in this paper. The population for this paper comprised all Foundation Phase teachers in the district. A purposive sample of 15 Foundation Phase teachers from five rural-based schools was used. Data were collected through classroom observation and individual face-to-face interviews. Data were categorized, analyzed, and interpreted. Amongst the revealed teachers' encounters are learners' inability to read and write and learners' lack of English language background and learners' lack of the vocabulary to express themselves. This paper recommends the provision of relevant resources and support to effectively teach English First Additional Language to enable learners' engagement and effective use of the English language.Keywords: first additional language, english second language, medium of instruction, teacher professional development
Procedia PDF Downloads 7820067 A Study of Predicting Judgments on Causes of Online Privacy Invasions: Based on U.S Judicial Cases
Authors: Minjung Park, Sangmi Chai, Myoung Jun Lee
Abstract:
Since there are growing concerns on online privacy, enterprises could involve various personal privacy infringements cases resulting legal causations. For companies that are involving online business, it is important for them to pay extra attentions to protect users’ privacy. If firms can aware consequences from possible online privacy invasion cases, they can more actively prevent future online privacy infringements. This study attempts to predict the probability of ruling types caused by various invasion cases under U.S Personal Privacy Act. More specifically, this research explores online privacy invasion cases which was sentenced guilty to identify types of criminal punishments such as penalty, imprisonment, probation as well as compensation in civil cases. Based on the 853 U.S judicial cases ranged from January, 2000 to May, 2016, which related on data privacy, this research examines the relationship between personal information infringements cases and adjudications. Upon analysis results of 41,724 words extracted from 853 regal cases, this study examined online users’ privacy invasion cases to predict the probability of conviction for a firm as an offender in both of criminal and civil law. This research specifically examines that a cause of privacy infringements and a judgment type, whether it leads a civil or criminal liability, from U.S court. This study applies network text analysis (NTA) for data analysis, which is regarded as a useful method to discover embedded social trends within texts. According to our research results, certain online privacy infringement cases caused by online spamming and adware have a high possibility that firms are liable in the case. Our research results provide meaningful insights to academia as well as industry. First, our study is providing a new insight by applying Big Data analytics to legal cases so that it can predict the cause of invasions and legal consequences. Since there are few researches applying big data analytics in the domain of law, specifically in online privacy, this study suggests new area that future studies can explore. Secondly, this study reflects social influences, such as a development of privacy invasion technologies and changes of users’ level of awareness of online privacy on judicial cases analysis by adopting NTA method. Our research results indicate that firms need to improve technical and managerial systems to protect users’ online privacy to avoid negative legal consequences.Keywords: network text analysis, online privacy invasions, personal information infringements, predicting judgements
Procedia PDF Downloads 22920066 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia
Abstract:
Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines
Procedia PDF Downloads 23420065 Using Google Distance Matrix Application Programming Interface to Reveal and Handle Urban Road Congestion Hot Spots: A Case Study from Budapest
Authors: Peter Baji
Abstract:
In recent years, a growing body of literature emphasizes the increasingly negative impacts of urban road congestion in the everyday life of citizens. Although there are different responses from the public sector to decrease traffic congestion in urban regions, the most effective public intervention is using congestion charges. Because travel is an economic asset, its consumption can be controlled by extra taxes or prices effectively, but this demand-side intervention is often unpopular. Measuring traffic flows with the help of different methods has a long history in transport sciences, but until recently, there was not enough sufficient data for evaluating road traffic flow patterns on the scale of an entire road system of a larger urban area. European cities (e.g., London, Stockholm, Milan), in which congestion charges have already been introduced, designated a particular zone in their downtown for paying, but it protects only the users and inhabitants of the CBD (Central Business District) area. Through the use of Google Maps data as a resource for revealing urban road traffic flow patterns, this paper aims to provide a solution for a fairer and smarter congestion pricing method in cities. The case study area of the research contains three bordering districts of Budapest which are linked by one main road. The first district (5th) is the original downtown that is affected by the congestion charge plans of the city. The second district (13th) lies in the transition zone, and it has recently been transformed into a new CBD containing the biggest office zone in Budapest. The third district (4th) is a mainly residential type of area on the outskirts of the city. The raw data of the research was collected with the help of Google’s Distance Matrix API (Application Programming Interface) which provides future estimated traffic data via travel times between freely fixed coordinate pairs. From the difference of free flow and congested travel time data, the daily congestion patterns and hot spots are detectable in all measured roads within the area. The results suggest that the distribution of congestion peak times and hot spots are uneven in the examined area; however, there are frequently congested areas which lie outside the downtown and their inhabitants also need some protection. The conclusion of this case study is that cities can develop a real-time and place-based congestion charge system that forces car users to avoid frequently congested roads by changing their routes or travel modes. This would be a fairer solution for decreasing the negative environmental effects of the urban road transportation instead of protecting a very limited downtown area.Keywords: Budapest, congestion charge, distance matrix API, application programming interface, pilot study
Procedia PDF Downloads 19820064 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment
Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali
Abstract:
This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets
Procedia PDF Downloads 21320063 Comfort in Green: Thermal Performance and Comfort Analysis of Sky Garden, SM City, North EDSA, Philippines
Authors: Raul Chavez Jr.
Abstract:
Green roof's body of knowledge appears to be in its infancy stage in the Philippines. To contribute to its development, this study intends to answer the question: Does the existing green roof in Metro Manila perform well in providing thermal comfort and satisfaction to users? Relatively, this study focuses on thermal sensation and satisfaction of users, surface temperature comparison, weather data comparison of the site (Sky Garden) and local weather station (PAG-ASA), and its thermal resistance capacity. Initially, the researcher conducted a point-in-time survey in parallel with weather data gathering from PAG-ASA and Sky Garden. In line with these, ambient and surface temperature are conducted through the use of a digital anemometer, with humidity and temperature, and non-contact infrared thermometer respectively. Furthermore, to determine the Sky Garden's overall thermal resistance, materials found on site were identified and tabulated based on specified locations. It revealed that the Sky Garden can be considered comfortable based from PMV-PPD Model of ASHRAE Standard 55 having similar results from thermal comfort and thermal satisfaction survey, which is contrary to the actual condition of the Sky Garden by means of a psychrometric chart which falls beyond the contextualized comfort zone. In addition, ground floor benefited the most in terms of lower average ambient temperature and humidity compared to the Sky Garden. Lastly, surface temperature data indicates that the green roof portion obtained the highest average temperature yet performed well in terms of heat resistance compared to other locations. These results provided the researcher valuable baseline information of the actual performance of a certain green roof in Metro Manila that could be vital in locally enhancing the system even further and for future studies.Keywords: Green Roof, Thermal Analysis, Thermal Comfort, Thermal Performance
Procedia PDF Downloads 16820062 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 12820061 The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa
Authors: P. M. Kundu, L. R. Singo, J. O. Odiyo
Abstract:
Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment.Keywords: catchment, digital elevation model, hydrological model, routing, runoff
Procedia PDF Downloads 56620060 Measuring the Effect of a Music Therapy Intervention in a Neonatal Intensive Care Unit in Spain
Authors: Pablo González Álvarez, Anna Vinaixa Vergés, Paula Sol Ventura, Paula Fernández, Mercè Redorta, Gemma Ginovart Galiana, Maria Méndez Hernández
Abstract:
Context: The use of music therapy is gaining popularity worldwide, and it has shown positive effects in neonatology. Hospital Germans Trias i Pujol has recently established a music therapy unit and initiated a project in their neonatal intensive care unit (NICU). Research Aim: The aim of this study is to measure the effect of a music therapy intervention in the NICU of Hospital Germans Trias i Pujol in Spain. Methodology: The study will be an observational analytical case-control study. All newborns admitted to the neonatology unit, both term and preterm, and their parents will be offered a session of music therapy. Data will be collected from families who receive at least two music therapy sessions. Maternal and paternal anxiety levels will be measured through a pre- and post-intervention test. Findings: The study aims to demonstrate the benefits and acceptance of music therapy by patients, parents, and healthcare workers in the neonatal unit. The findings are expected to show a reduction in maternal and paternal anxiety levels following the music therapy sessions. Theoretical Importance: This study contributes to the growing body of literature on the effectiveness of music therapy in neonatal care. It will provide evidence of the acceptance and potential benefits of music therapy in reducing anxiety levels in both parents and babies in the NICU setting. Data Collection: Data will be collected from families who receive at least two music therapy sessions. This will include pre- and post-intervention test results to measure anxiety levels. Analysis Procedures: The collected data will be analyzed using appropriate statistical methods to determine the impact of music therapy on reducing anxiety levels in parents. Questions Addressed: - What is the effect of music therapy on maternal anxiety levels? - What is the effect of music therapy on paternal anxiety levels? - What is the acceptability and perceived benefits of music therapy among patients and healthcare workers in the NICU? Conclusion: The study aims to provide evidence supporting the value of music therapy in the neonatal intensive care unit. It seeks to demonstrate the positive effect of music therapy on reducing anxiety levels among parents.Keywords: neonatology, music therapy, neonatal intensive care unit, babies, parents
Procedia PDF Downloads 5020059 An Investigation on Orthopedic Rehabilitation by Avoiding Thermal Necrosis
Authors: R. V. Dahibhate, A. B. Deoghare, P. M. Padole
Abstract:
Maintaining natural integrity of biosystem is paramount significant for orthopedic surgeon while performing surgery. Restoration is challenging task to rehabilitate trauma patient. Drilling is an inevitable procedure to fix implants. The task leads to rise in temperature at the contact site which intends to thermal necrosis. A precise monitoring can avoid thermal necrosis. To accomplish it, data acquiring instrument is integrated with the drill bit. To contemplate it, electronic feedback system is developed. It not only measures temperature without any physical contact in between measuring device and target but also visualizes the site and monitors correct movement of tool path. In the current research work an infrared thermometer data acquisition system is used which monitors variation in temperature at the drilling site and a camera captured movement of drill bit advancement. The result is presented in graphical form which represents variations in temperature, drill rotation and time. A feedback system helps in keeping drill speed in threshold limit.Keywords: thermal necrosis, infrared thermometer, drilling tool, feedback system
Procedia PDF Downloads 23120058 Construction of a Desktop Arduino Controlled Propeller Test Stand
Authors: Brian Kozak, Ryan Ferguson, Evan Hockeridge
Abstract:
Aerospace engineering and aeronautical engineering students studying propulsion often learn about propellers and their importance in aviation propulsion. In order to reinforce concepts introduced in the classroom, laboratory projects are used. However, to test a full scale propeller, an engine mounted on a test stand must be used. This engine needs to be enclosed in a test cell for appropriated safety requirements, is expensive to operate, and requires a significant amount of time to change propellers. In order to decrease costs and time requirements, the authors designed and built an electric motor powered desktop Arduino controlled test stand. This test stand is used to enhance student understanding of propeller size and pitch on thrust. The test stand can accommodate propellers up to 25 centimeters in diameter. The code computer allowed for the motor speed to be increased or decreased by 1% per second. Outputs that are measured are thrust, motor rpm, amperes, voltage, and motor temperature. These data are exported as a .CVS file and can be imported into a graphing program for data analysis.Keywords: Arduino, Laboratory Project, Test stand, Propeller
Procedia PDF Downloads 21920057 The Sustainable Blue Economy Innovation and Growth: Data Based on China for 2006-2015 Years
Authors: Mingbao Chen
Abstract:
The blue economy is a new comprehensive marine economy integrated with resources, industries, and regions, and is an upgraded version of the marine economy. The blue economy attaches great importance to the coordinated development of the ecological environment and the economy, which is an emerging economic form advocated by all countries in the world. This paper constructs the model including four variables:natural capital, economic capital, intellectual capital, cultural capital. Theoretically, this paper deduces the function mechanism of variables on economic growth, and empirically calculates the driving force and influence of the blue economy on the national economy by using data of China's 2006-2015 year. The results show that natural capital and economic capital remain the main factors of blue growth in the blue economy. And with the development of economic society and technological progress, the role of intellectual capital and cultural capital is bigger and bigger. Therefore, promoting the development of marine science and technology and culture is the focus of the future blue economic development.Keywords: blue growth, natural capital, intellectual capital, cultural capital
Procedia PDF Downloads 15620056 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 28220055 Evaluating the Performance of Existing Full-Reference Quality Metrics on High Dynamic Range (HDR) Video Content
Authors: Maryam Azimi, Amin Banitalebi-Dehkordi, Yuanyuan Dong, Mahsa T. Pourazad, Panos Nasiopoulos
Abstract:
While there exists a wide variety of Low Dynamic Range (LDR) quality metrics, only a limited number of metrics are designed specifically for the High Dynamic Range (HDR) content. With the introduction of HDR video compression standardization effort by international standardization bodies, the need for an efficient video quality metric for HDR applications has become more pronounced. The objective of this study is to compare the performance of the existing full-reference LDR and HDR video quality metrics on HDR content and identify the most effective one for HDR applications. To this end, a new HDR video data set is created, which consists of representative indoor and outdoor video sequences with different brightness, motion levels and different representing types of distortions. The quality of each distorted video in this data set is evaluated both subjectively and objectively. The correlation between the subjective and objective results confirm that VIF quality metric outperforms all to their tested metrics in the presence of the tested types of distortions.Keywords: HDR, dynamic range, LDR, subjective evaluation, video compression, HEVC, video quality metrics
Procedia PDF Downloads 52520054 Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry
Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay
Abstract:
The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers
Procedia PDF Downloads 40720053 Songkran Tradition: An Invented Tradition of Thai Buddhists and Thai Muslims for Peace and Happiness in Southern Thailand
Authors: Utit Sungkharat
Abstract:
Purpose: To investigate an invented tradition of Thai Buddhists and Thai Muslims for peace. Methods: The data for this qualitative research were collected from related documents and research reports, field data, and in-depth interviews with Buddhist and Muslim religious leaders and people in the community. Results: The results of the research revealed that Thai Buddhists and Thai Muslims in Tamod Community in the Southern part of Thailand who have lived in the same community and shared the same history of the community jointly invented the Songkran tradition holding on to the reason that they have lived in the same community founded by the same person. The reason for inventing this tradition is that Songkran is a tradition for paying respect to ancestors who passed away and people in Tamod have the same ancestor even though they believe in different religions. Therefore, paying respect to the ancestors can be performed together by people of the two religions. The invented tradition has not only united them and empowered them to drive their community to development but also brought peace and happiness to this community.Keywords: invented tradition, Thai Buddhists, Thai Muslims, peace
Procedia PDF Downloads 35220052 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen
Procedia PDF Downloads 23120051 Supporting Young Emergent Multilingual Learners in Prekindergarten Classrooms: Policy Implications
Authors: Tiedan Huang, Chun Zhang, Caitlin Coe
Abstract:
This study investigated the quality of instructional support for young Emergent Multilingual Learners (EMLs) in 50 Universal Prekindergarten (UPK) classroom in New York City (NYC). This is one of the first empirical studies examining the instructional support for this student population. We collected data using a mixed method of structured observations of teacher-child interactions in 50 classrooms, and surveys and interviews with program leaders and the teaching teams. We found that NYC’s UPK classrooms offered warm and supportive environments for EMLs. Nevertheless, in general, instructional support was relatively low. This study identified large mindset, knowledge, and practice gaps—and a real opportunity—among NYC early childhood professionals, specifically in the areas of providing adequate instructional and linguistic support for EMLs as well as partnering with families in capturing their cultural and home literacy assets. Consistent, rigorous, and meaningful use of data is necessary to support both EMLs’ language and literacy development and teachers’/leaders’ professional development.Keywords: high quality instruction, culturally and linguistically responsive practices, professional development, workforce development
Procedia PDF Downloads 8020050 Controlled Mobile Platform for Service Based Humanoid Robot System
Authors: Shrikant V. Sangludkar, Dilip I. Sangotra, Sachin T. Bagde, Abhijeet A. Khandagale
Abstract:
The paper discloses a controlled tracked humanoid robot moving platform. A driving and driven wheel are controlled by a control module to drive a robot body to move according to data signals of a monitoring module, in addition, remote transmission can be achieved, and a certain remote control function can be realized. A power management module circuit board looks after in used for providing electric drive for moving of the robot body and distribution of separate power source to be used in internal of robot system. An external port circuit board is arranged, the tracked robot moving platform can be used immediately for any data acquisition. The moving platform is simple and compact in structure, strong in adaptation performance, stable in operation and suitable for being operated in severe environments. Meanwhile, a layered modular installation structure is adopted, and therefore the moving platform is convenient to assemble and disassemble.Keywords: moving platform, humanoid robot, embedded controlled drive, mobile robot, museum robots, self-localization, obstacle avoidance, communication
Procedia PDF Downloads 42620049 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 33020048 The Reflection on Pre-Service Teacher Training Program in Science Education
Authors: Sumalee Tientongdee
Abstract:
The pre-service teacher training program at Suan Sunandha Rajabhat University, Bankgok Thailand has been provided for undergraduate students for more than 80 years. It was established as the first teacher college in the country. The pre-service teacher program in science education is considered as one of the new training programs to prepare pre-service teacher to teach science in secondary school level. The need of program assessment is strongly important. Therefore, this study was conducted to gain the opinions and recommendations from the principals, in-service teachers, and mentoring teachers from the partnership schools of Bangkok. The invited 120 participants for the annual meeting was hold in May 2017. The focus group discussion and questionnaires were used to collect the data during the reflection session. The content analysis was used to analyze the qualitative data. The results showed that the pre-service teacher training program in science education should improve students’ creative thinking skill, service mind, personality, and attitudes toward teaching science career. Also, the future science teachers must be able to teach in English to have more opportunities to teach science in Southeast Asian countries.Keywords: pre-service teacher training program, reflection, science education, Suan Sunandha Rajabhat university
Procedia PDF Downloads 21620047 Life Cycle Assesment (LCA) Study of Shrimp Fishery in the South East Coast of Arabian Sea
Authors: Leela Edwin, Rithin Joseph, P. H. Dhiju Das, K. A. Sayana, P. S. Muhammed Sherief
Abstract:
The shrimp trawl fishery is considered one of the more valuable fisheries from the South east Coast of Arabian Sea. Inventory data for the shrimp were collected over 1 year period and used to carry out a life cycle assessment (LCA). LCA was performed to assess and compare the environmental impacts associated with the fishing operations related to shrimp fishery. This analysis included the operation of the vessels, together with major inputs related to the production of diesel, trawl nets, or anti-fouling paints. Data regarding vessel operation was obtained from the detailed questionnaires filled out by 180 trawlers. The analysis on environmental impacts linked to shrimp extraction on a temporal scale, showed that varying landings enhanced the environmental burdens mainly associated with activities related to diesel production, transport and consumption of the fishing vessels. Discard rates for trawlers were also identified as a major environmental impact in this fishery.Keywords: shrimp trawling, life cycle assesment (LCA), Arabian sea, environmental impacts
Procedia PDF Downloads 323