Search results for: wheatstone bridge load cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7006

Search results for: wheatstone bridge load cell

1216 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V

Authors: Javed Iqbal

Abstract:

The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.

Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells

Procedia PDF Downloads 243
1215 The Effect of Manual Acupuncture-induced Injury as a Mechanism Contributing to Muscle Regeneration

Authors: Kamal Ameis

Abstract:

This study aims to further improve our understanding of the underlying mechanism of local injury that occurs after manual acupuncture needle manipulation, and that initiates the muscle regeneration process, which is essential for muscle maintenance and adaptation. Skeletal muscle is maintained by resident stem cells called muscle satellite cells. These cells are normally in quiescent state, but following muscle injury, they re-enter the cell cycle and execute a myogenic program resulting in muscle fiber regeneration. Our previous work in young rats demonstrated that acupuncture treatment induced injury that activated resident satellite (stem) cells, which leads to muscle regeneration. Skeletal muscle regeneration is an adaptive response to injury that requires a tightly orchestrated event between signaling pathways activated by growth factor and intrinsic regulatory program controlled by myogenic transcription factor. We identified several gene expressions uniquely important for muscle regeneration in response to acupuncture treatment at different time course using different biological techniques, including Immunocytochemistry, western blotting, and Real Time PCR. This study uses a novel but non-invasive model of injury induced by manual acupuncture to further our current understanding of regenerative mechanism of muscle stem cells. From a clinical perspective, this model of injury induced by manual acupuncture may be easily translatable into a clinical tool that can be used as an alternative to physical exercise for patients challenged by bed rest or forced inactivity. Finally, the knowledge gained from this research could be useful for studies of the local effects of various modalities of induced injury, such as the traditional method of healing by cupping (hijamah), which may enhanced muscle stem cells and muscle fiber regeneration.

Keywords: acupuncture, injury, regeneration, muscle stem cells

Procedia PDF Downloads 152
1214 Waste Heat Recovery System

Authors: A. Ramkumar, Anvesh Sagar, Preetham P. Karkera

Abstract:

Globalization in the modern era is dependent on the International logistics, the economic and reliable means is provided by the ocean going merchant vessel. The propulsion system which drives this massive vessels has gone through leaps and bounds of evolution. Most reliable system of propulsion adopted by the majority of vessels is by marine diesel engine. Since the first oil crisis of 1973, there is demand in increment of efficiency of main engine. Due to increase in the oil prices ship-operators explores for reduction in the operational cost of ship. And newly adopted IMO’s EEDI & SEEMP rules calls for the effective measures taken in this regard. The main engine of a ship suffers a lot of thermal losses, they mainly occur due to exhaust gas waste heat, radiation and cooling. So to increase the overall efficiency of system, we have to look into the solution to harnessing this waste energy of main engine to increase the fuel economy. During the course of research, engine manufacturers have developed many waste heat recovery systems. In our paper we see about additional options to harness this waste heat. The exhaust gas of engine coming out from the turbocharger still holds enough heat to go to the exhaust gas economiser to produce steam. This heat of exhaust gas can be used to heat a liquid of less boiling point after coming out from the turbocharger. The vapour of this secondary liquid can be superheated by a bypass exhaust or exhaust of turbocharger. This vapour can be utilized to rotate the turbine which is coupled to a generator. And the electric power for ship service can be produced with proper configuration of system. This can be included in PMS of ship. In this paper we seek to concentrate on power generation with use of exhaust gas. Thereby taking out the load on the main generator and increasing the efficiency of the system. This will help us to comply with the new rules of IMO. Our method helps to develop clean energy.

Keywords: EEDI–energy efficiency design index, IMO–international maritime organization PMS-power management system, SEEMP–ship energy efficiency management plan

Procedia PDF Downloads 386
1213 Geotechnical Evaluation and Sizing of the Reinforcement Layer on Soft Soil in the Construction of the North Triage Road Clover, in Brasilia Federal District, Brazil

Authors: Rideci Farias, Haroldo Paranhos, Joyce Silva, Elson Almeida, Hellen Silva, Lucas Silva

Abstract:

The constant growth of the fleet of vehicles in the big cities, makes that the Engineering is dynamic, with respect to the new solutions for traffic flow in general. In the Federal District (DF), Brazil, it is no different. The city of Brasilia, Capital of Brazil, and Cultural Heritage of Humanity by UNESCO, is projected to 500 thousand inhabitants, and today circulates more than 3 million people in the city, and with a fleet of more than one vehicle for every two inhabitants. The growth of the city to the North region, made that the urban planning presented solutions for the fleet in constant growth. In this context, a complex of viaducts, road accesses, creation of new rolling roads and duplication of the Bragueto bridge over Paranoa lake in the northern part of the city was designed, giving access to the BR-020 highway, denominated Clover of North Triage (TTN). In the geopedological context, the region is composed of hydromorphic soils, with the presence of the water level at some times of the year. From the geotechnical point of view, are soils with SPT < 4 and Resistance not drained, Su < 50 kPa. According to urban planning in Brasília, special art works can not rise in the urban landscape, contrasting with the urban characteristics of the architects Lúcio Costa and Oscar Niemeyer. Architects hired to design the new Capital of Brazil. The urban criterion then created the technical impasse, resulting in the technical need to ‘bury’ the works of art and in turn the access greenhouses at different levels, in regions of low support soil and water level Outcrossing, generally inducing the need for this study and design. For the adoption of the appropriate solution, Standard Penetration Test (SPT), Vane Test, Diagnostic peritoneal lavage (DPL) and auger boring campaigns were carried out. With the comparison of the results of these tests, the profiles of resistance of the soils and water levels were created in the studied sections. Geometric factors such as existing sidewalks and lack of elevation for the discharge of deep drainage water have inhibited traditional techniques for total removal of soft soils, thus avoiding the use of temporary drawdown and shoring of excavations. Thus, a structural layer was designed to reinforce the subgrade by means of the ‘needling’ of the soft soil, without the need for longitudinal drains. In this context, the article presents the geological and geotechnical studies carried out, but also the dimensioning of the reinforcement layer on the soft soil with a view to the main objective of this solution that is to allow the execution of the civil works without the interference in the roads in use, Execution of services in rainy periods, presentation of solution compatible with drainage characteristics and soft soil reinforcement.

Keywords: layer, reinforcement, soft soil, clover of north triage

Procedia PDF Downloads 231
1212 Inoculation of Cyanobacteria Improves the Lignin Content of Thymus vulgaris L.

Authors: Nasim Rasuli, Akram Ahmadi, Hossein Riahi, Zeinab Shariatmadari, Majid Ghorbani Nohooji, Pooyan Mehraban Joubani

Abstract:

Cyanobacteria are one of the most promising sources of new biostimulants and have received much attention due to their diverse applications in biotechnology. These microorganisms enhance the growth and productivity of plants by producing plant growth stimulants and fixing atmospheric nitrogen. Thymus vulgaris L., a valuable medicinal plant from the Lamiaceae family, is widely distributed across the globe. essential oil of T. vulgaris is best characterized by the prominence of phenols, making them the key compounds in its composition. Lignin biosynthesis as a natural plant polyphenol plays a crucial role in promoting plant growth, strengthening cell walls, and increasing resistance to pathogens. In this study, the bioelicitor activity of five cyanobacterial suspensions including Anabaena torulosa ISB213, Nostoc calcicola ISB215, Nostoc ellipsosporum ISB217, Trichormus doliolum ISB214, and Oscillatoria sp. ISB2116 on the lignin content of the T. vulgaris L. was investigated. Pot experiments were performed by inoculation of a %2 algal extract to the soil of treated plants one week before planting and then every 20 days. After four months, the lignin content in the leaves of both treated and control plants was evaluated. The results demonstrated that the application of cyanobacteria significantly increased the lignin content in the leaves of treated plants compared to the control. The treatment with Oscillatoria sp. ISB216 and N. ellipsosporum ISB217 resulted in the highest lignin content, with an increase of 93.33% and 86.67%, respectively. These findings highlight the potential of cyanobacteria as bioelicitors, offering a viable alternative for enhancing the production of secondary metabolites in T. vulgaris. Consequently, this could contribute to the economic value of this medicinal plant.

Keywords: cyanobacteria, bioelicitor, thymus vulgaris, lignin

Procedia PDF Downloads 90
1211 Dietary N-6/N-3 PUFA Ratios Affect the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Colitis

Authors: Cyoung-Huei Huang, Chiu-Li Yeh, Man-Hui Pai, Sung-Ling Yeh

Abstract:

This study evaluated the effect of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups in this study. Mice were fed for 24 d with an AIN-93G diet either with soybean oil (S), a mixture of soybean oil and low fish oil content (LF) or high fish oil content (HF). The ratio of n-6/n-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups provided 2% DSS in drinking water during day 15-19. All mice drank distilled water from day 20-24 for recovery and sacrificed on day 25. The results showed that colitis resulted in higher Th1, Th2, and Th17 and lower Treg percentages in the blood. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Further, the percentages of Th1, Th2, and Th17 cells in the blood were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with n-6/n-3 PUFA ratio 2:1 had more pronounce effects than ratio 4:1. These results suggest that diets with an n-6/n-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared to the n-6/n-3 PUFA ratio 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.

Keywords: inflammatory bowel disease, n-3 polyunsaturated fatty acids, helper T lymphocyte, regulatory T lymphocyte

Procedia PDF Downloads 300
1210 Role of Tyrosine-Phosphorylated STAT3 in Liver Regeneration: Survival, DNA Synthesis, Inflammatory Reaction and Liver Mass Recovery

Authors: JiYoung Park, SueGoo Rhee, HyunAe Woo

Abstract:

In liver regeneration, quiescent hepatocytes need to be primed to fully respond to growth factors such as hepatocyte growth factor. To understand the priming process, it is necessary to analyze patterns of gene expression that occur during liver regeneration after partial hepatectomy (PHx). Recently, tyrosine phosphorylation of signal transducer and activator of transcription 3 (pYSTAT3) has been shown to play an important role in initiating liver regeneration. In order to evaluate the role of pYSTAT3 on liver regeneration after PHx, we used an intrabody which can selectively inhibit pYSTAT3. In our previous studies, an intrabody had been shown that it bound specifically to the pYSTAT3. Adenovirus-mediated expression of the intrabody in HepG2 cells, as well as mouse liver, blocked both accumulation of pYSTAT3 in the nucleus and downstream target of pYSTAT3. In this study, PHx was performed on intrabody-expressing mice and the expression levels of liver regeneration-related genes were analyzed. We also measured liver/body weight ratios and the related cellular signaling pathways were analyzed. Acute phase response genes were reduced in an intrabody-expressing mice during liver regeneration than in control virus-injected mice. However, the time course of liver mass restoration in intrabody-expressing mice was similar to that observed in control virus-injected mice. We also observed that the expression levels of anti-apoptotic genes, such as Bcl2 and Bcl-xL were decreased in intrabody-expressing mice whereas the expression of cell cycle-related genes such as cyclin D1, and c-myc was increased. Liver regeneration after PHx was partially impaired by the selective inhibition of pYSTAT3 with a phosphorylation site-specific intrabody and these results indicated that pYSTAT3 might have limited role in liver mass recovery.

Keywords: STAT3, pYSTAT3, liver regeneration, intrabody

Procedia PDF Downloads 314
1209 Phytochemical Analysis and Antioxidant Activity of Colocasia esculenta (L.) Leaves

Authors: Amit Keshav, Alok Sharma, Bidyut Mazumdar

Abstract:

Colocasia esculenta leaves and roots are widely used in Asian countries, such as, India, Srilanka and Pakistan, as food and feed material. The root is high in carbohydrates and rich in zinc. The leaves and stalks are often traditionally preserved to be eaten in dry season. Leaf juice is stimulant, expectorant, astringent, appetizer, and otalgia. Looking at the medicinal uses of the plant leaves; phytochemicals were extracted from the plant leaves and were characterized using Fourier-transform infrared spectroscopy (FTIR) to find the functional groups. Phytochemical analysis of Colocasia esculenta (L.) leaf was studied using three solvents (methanol, chloroform, and ethanol) with soxhlet apparatus. Powder of the leaves was employed to obtain the extracts, which was qualitatively and quantitatively analyzed for phytochemical content using standard methods. Phytochemical constituents were abundant in the leave extract. Leaf was found to have various phytochemicals such as alkaloids, glycosides, flavonoids, terpenoids, saponins, oxalates and phenols etc., which could have lot of medicinal benefits such as reducing headache, treatment of congestive heart failure, prevent oxidative cell damage etc. These phytochemicals were identified using UV spectrophotometer and results were presented. In order to find the antioxidant activity of the extract, DPPH (2,2-diphenyl-1-picrylhydrazyl) method was employed using ascorbic acid as standard. DPPH scavenging activity of ascorbic acid was found to be 84%, whereas for ethanol it was observed to be 78.92%, for methanol: 76.46% and for chloroform: 72.46%. Looking at the high antioxidant activity, Colocasia esculenta may be recommended for medicinal applications. The characterizations of functional groups were analyzed using FTIR spectroscopy.

Keywords: antioxidant activity, Colocasia esculenta, leaves, characterization, FTIR

Procedia PDF Downloads 240
1208 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 218
1207 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 318
1206 Genetics of Atopic Dermatitis: Role of Cytokines Genes Polymorphisms

Authors: Ghaleb Bin Huraib, Fahad Al Harthi, Misbahul Arfin, Abdulrahman Al-Asmari

Abstract:

Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory skin disease characterized by severe itching and recurrent relapsing eczema-like skin lesions, affecting up to 20% of children and 10% of adults in industrialized countries. AD is a complex multifactorial disease, and its exact etiology and pathogenesis have not been fully elucidated. The aim of this study was to investigate the impact of gene polymorphisms of T helper cell subtype Th1 and Th2 cytokines, interferon-gamma (IFN-γ), interleukin-6 (IL-6) and transforming growth factor (TGF)-β1on AD susceptibility in a Saudi cohort. One hundred four unrelated patients with AD and 195 healthy controls were genotyped for IFN-γ (874A/T), IL-6 (174G/C) and TGF-β1 (509C/T) polymorphisms using ARMS-PCR and PCR-RFLP technique. The frequency of genotypes AA and AT of IFN-γ (874A/T) differed significantly among patients and controls (P 0.001). The genotype AT was increased while genotype AA was decreased in AD patients as compared to controls. AD patients also had higher frequency of T containing genotypes (AT+TT) than controls (P = 0.001). The frequencies of allele T and A were statistically different in patients and controls (P = 0.04). The frequencies of genotype GG and allele G of IL-6 (174G/C) were significantly higher while genotype GC and allele C were lower in AD patients than controls. There was no significant difference in the frequencies of alleles and genotypes of TGF-β1 (509C/T) polymorphism between patient and control groups. These results showed that susceptibility to AD is influenced by presence or absence of genotypes of IFN-γ (874A/T) and IL-6 (174G/C) polymorphisms. It is concluded that T-allele and T-containing genotypes (AT+TT) of IFN-γ (874A/T) and G-allele and GG genotype ofIL-6 (174G/C) polymorphisms are susceptible to AD in Saudis.On the other hand, the TGF-β1 (509C/T) polymorphism may not be associated with AD risk in Saudi population however further studies with large sample size are required to confirm these findings.

Keywords: atopic dermatitis, interferon-γ, interleukin-6, transforming growth factor-β1, polymorphism

Procedia PDF Downloads 126
1205 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 85
1204 Design and Development of Engine Valve Train Wear Test Rig for the Assessment of Valve Train Tribochemistry

Authors: V. Manjunath, C. V. Chandrashekara

Abstract:

Ecosystem authority calls for the use of lubricants with less effect on the nature in terms of exhaust emission, while engine user demands more mileage per liter of fuel without any compromise on engine durability. From this viewpoint, engine manufacturers require the optimum combination of materials and lubricant additive package to minimize friction and wear in the engine components like piston, crankshaft and valve train etc. The demands are placed for requirements to operate at higher speeds, loads, temperature and for extended replacement intervals of engine oil. Besides, it is necessary to accurately predict the lubricant life or the replacement interval to prevent lubrication and valve-train components failure. Experimental tribology evaluation of new engine oils requires large amount of time and energy. Hence low cost bench test is necessary for industries and original equipment manufacturing companies (OEM) to study the performance of lubricants. The present work outlines the procedure for the design and development of a valve train wear rig (MCR) to simulate the ASTMD-6891 and to develop new engine test for Indian automobile sector to evaluate lubricants for Indian automobile market. In order to improve the lubrication between cam and follower of internal combustion engine, the influence of materials or oils viscosity and additives on the friction and wear characteristics are examined with test rig by increasing the contact load at two different revolution speed. From the experimentation following results are made obvious. Temperature, Torque, speed and wear plots are used to validate the data obtained from the newly developed multi-cam cam rig (MCR) with follower against a cast iron camshaft. Camshaft lobe wear is measured at seven different locations on cam profile. Tribofilm formed using 5W-30 oil is evaluated and correlated with the standard test results.

Keywords: ASTMD-6891, multi-cam rig (MCR), 5W-30, cam-profile

Procedia PDF Downloads 178
1203 Factors Influencing the Choice of Multi-Month Drug Dispensing Model Amongst Children and Adolescents Living with HIV (C/ALHIV) in Eswatini

Authors: Mbuso Siwela

Abstract:

Background: The Sub-Saharan Africa region has the greatest number of people eligible to receive antiretroviral treatment (ART). Multi-month Drug dispensing (MMD) of antiretroviral treatment (ART) aims to reduce patient-related barriers to access long-term treatment and improve health system efficiency. In Eswatini, however, few children and adolescents are on MMD. Young Heroes is implementing an HIV program that aims to avert new HIV infections in children and youth and improve treatment outcomes for children and adolescents living with HIV (C/ALHIV: 0-19 Years) and OVC caregivers with HIV prevention and impact mitigation interventions that prevent new HIV infections and reduce vulnerability. Aim of the study: The study aimed to ascertain factors that are associated with the assignment of the MMD model on C/ALHIVs. Methodology: The project provides treatment adherence support through well-trained community cadres (Home Visitors - HVs) at both community and health facility levels. During door-to-door visits, HVs track all C/ALHIV enrolled in the project monthly and refer any who might have stopped or interrupted treatment. C/ALHIV with unsuppressed viral load is supported through case conferencing and teen clubs. A quantitative cross-sectional analysis was conducted using STATA for children and adolescents living with HIV enrolled in the project. Bivariate analysis was conducted, and the Logistic Regression model was used to ascertain the effects of duration on ART on the choice of MMD model. Results: Data for 544 C/ALHIV (0-19 Years) was analyzed in STATA. Results show a strong association between (duration on ART, Age, being in teen club) and enrolment in an MMD model. Duration on ART is a major predictor for the choice of MMD model at (95% CI: 0.0012905 – 0.0039812; P = <0.0001). C/ALHIV who have been on ART for less than a year are less likely to be on MMD. C/ALHIVs who are 1 or more years on ART are more likely to be in 3 months dispensing, while those who are 5 years or more are most likely to be in 6 months model.

Keywords: C/ALHIV, OVC, HIV, treatment

Procedia PDF Downloads 50
1202 Brain Derived Neurotrophic Factor (BDNF) Down Regulation in Peritoneal Carcinomatosis Patients

Authors: Awan A. Zaima, Tanvieer Ayesha, Mirshahi Shahsoltan, Pocard Marc, Mirshahi Massoud

Abstract:

Brain-derived neurotrophic factor (BDNF) is described as a factor helping to support the survival of existing neurons by involving the growth and differentiation of new neurons and synapses. Cancer diagnosis impacts the mental health, and in consequences, depression arise eventually hinders recovery and disrupts the quality of life and surviving chances of patients. The focus of this study is to hint upon a prospective biomarker as a promising diagnostic tool for an early indicator/predictor of depression prevalence in cancer patients for better care and treatment options. The study aims to analyze peripheral biomarkers from neuro immune axis (BDNF, IL21 as a NK cell activator) using co-relation approach. Samples were obtained from random non cancer candidates and advanced peritoneum carcinomatosis patients with 25% pseudomyxoma, 21% Colon cancer,19% stomach cancer, 10% ovarian cancer, 8% appendices cancer, and 10% other area of peritoneum cancer patients. Both groups of the study were categorized by gender and age, with a range of 18 to 86 years old. Biomarkers were analyzed in collected plasma by performing multiplex sandwich ELISA system. Data were subjected to statistical analysis for the assessment of the correlation. Our results demonstrate that BNDF and IL 21 down regulated significantly in patient groupas compared to non-cancer candidates (ratio of patients/normalis 2.57 for BNDF and 1.32 for IL21). This preliminary investigation suggested that the neuro immune biomarkers are down regulated in carcinomatosis patients and can be associated with cancer expansion and cancer genesis. Further studies on larger cohort are necessary to validate this hypothesis.

Keywords: biomarkers, depression, peritoneum carcinoma, BNDF, IL21

Procedia PDF Downloads 120
1201 Improving the Feeding Value of Straws with Pleurotus Ostreatus

Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone

Abstract:

The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.

Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi

Procedia PDF Downloads 66
1200 Hydrogen Production from Solid Waste of Sago Processing Industries in Indonesia: Effect of Chemical and Biological Pretreatment

Authors: Pratikno Hidayat, Khamdan Cahyari

Abstract:

Hydrogen is the ultimate choice of energy carriers in future. It contents high energy density (42 kJ/g), emits only water vapor during combustion and has high energy conversion up to 50% in fuel cell application. One of the promising methods to produce hydrogen is from organic waste through dark fermentation method. It utilizes sugar-rich organic waste as substrate and hydrogen-producing microorganisms to generate the hydrogen. Solid waste of sago processing industries in Indonesia is one of the promising raw materials for both producing biofuel hydrogen and mitigating the environmental impact due to the waste disposal. This research was meant to investigate the effect of chemical and biological pretreatment i.e. acid treatment and mushroom cultivation toward lignocellulosic waste of these sago industries. Chemical pretreatment was conducted through exposing the waste into acid condition using sulfuric acid (H2SO4) (various molar i.e. 0.2, 0.3, and 0.4 M and various duration of exposure i.e. 30, 60 and 90 minutes). Meanwhile, biological treatment was conducted through utilization of the solid waste as growth media of mushroom (Oyster and Ling-zhi) for 3 months. Dark fermentation was conducted at pH 5.0, temperature 27℃ and atmospheric pressure. It was noticed that chemical and biological pretreatment could improve hydrogen yield with the highest yield at 3.8 ml/g VS (31%v H2). The hydrogen production was successfully performed to generate high percentage of hydrogen, although the yield was still low. This result indicated that the explosion of acid chemical and biological method might need to be extended to improve degradability of the solid waste. However, high percentage of hydrogen was resulted from proper pretreatment of residual sludge of biogas plant to generate hydrogen-producing inoculum.

Keywords: hydrogen, sago waste, chemical, biological, dark fermentation, Indonesia

Procedia PDF Downloads 369
1199 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 93
1198 Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression

Authors: Ercan Karadogan, Fatih Usta

Abstract:

Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures.

Keywords: auxetic materials, compressive behavior, metamaterials, negative Poisson’s ratio

Procedia PDF Downloads 101
1197 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma

Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha

Abstract:

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.

Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP

Procedia PDF Downloads 61
1196 The Effect of Malaria Parasitaemia on Serum Reproductive Hormonal Levels of Asymptomatic HIV Subjects in Nauth Nnewi, South Eastern Nigeria

Authors: Ezeugwunne Ifeoma Priscilla, Charles Chinedum Onyenekwe, Joseph Eberendu Ahaneku, Rosemary Adanma Analike, Adesuwa Peace Eidangbe

Abstract:

This study was designed to assess the effect of malaria parasitaemia on serum reproductive hormone levels of asymptomatic HIV adult subjects. A total of 271 participants aged between 17 and 58 ears were conveniently recruited. 135 asymptomatic HIV-infected subjects participated in the study; 67 of them had malaria parasitaemia. 136 HIV seropositive control subjects, 68 of them had malaria parasitaemia. Blood samples were collected from the participants for the determination of HIV status by immunoassay and immunochromatography. Enzyme-linked immunosorbent assay (ELISA) was used to assay for serum LH, FSH, Estrogen, testosterone, progesterone, prolactin, and PSA levels, CD4+T cell counts by Cyflow method, thick and thin films determination of malaria parasitaemia count and density by WHO. Student's t-tests and ANOVA were used to compare means. P<0.05 was considered statistically significant. The results showed significant differences in serum levels of LH, FSH, PSA, estrogen, progesterone, and testosterone amongst the groups at P<0.05, respectively. The serum levels of LH, FSH, and PSA were significantly higher in malaria-infected asymptomatic HIV subjects than in asymptomatic HIV subjects with malaria parasitaemia (P<0.05 in each case). Also, the serum levels of LH, FSH, PSA, estrogen, and progesterone were significantly higher in malaria-infected asymptomatic HIV subjects compared with malaria-infected HIV seronegative subjects (P<0.05, respectively). The mean MP counts and MP density were significantly higher in asymptomatic HIV subjects compared to HIV seronegative subjects (P<0.05, in each case). The mean serum levels of testosterone were significantly lower in both malaria-infected and malaria uninfected HIV seronegative subjects (P<0.05, in each case). In conclusion, Malaria and HIV co-infection might increase the burden of hypogonadism as well as primary testicular failure, hyperprogesteronaemia, elevated levels of estrogen, and PSA in adult males asymptomatic HIV subjects.

Keywords: malaria parasitaemia, HIV, CD4, reproductive hormones

Procedia PDF Downloads 147
1195 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents

Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić

Abstract:

Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.

Keywords: biotechnology, process model, xanthan, waste effluents

Procedia PDF Downloads 355
1194 Effect of Probiotic Feeding on Weight Gain, Blood Biochemical and Hematological Indices of Crossbred Dairy Goat Kids

Authors: Claire B. Salvedia, Enrico P. Supangco, Francisco B. Eligado, Renato Sa Vega, Antonio A. Rayos

Abstract:

The study was conducted to evaluate the effect of probiotic feeding on weight gain, blood biochemical and hematological indices of crossbred dairy goat kids. Sixteen (16) crossbred Anglo-Nubian x Saanen dairy goat kids, 3 to 4 months old, ranging from 19 to 23kg were randomly assigned into four treatments fed with 5x109 cfu/ml probiotic supplements; Treatment 1 – control; Treatment 2 – lactic acid bacteria (L. plantarum BS and P. acidilactici 3G3); treatment 3 – S. cerevisiae 2030; Treatment 4 – multi-strain probiotics (L. plantarum BS, P. acidilactici 3G3, and S.cerevisiae 2030). Feed ration provided daily for each of the experimental animals were composed of 1kg mixed concentrate feed ((Leucaena leucocephala dried leaves and pollard), and 4 kg fresh Pennisetum purpureum and Gliciridia sepium leaves (50:50). The experimental feeding trial lasted for 9 weeks. Result revealed that treatments fed with probiotics had significantly (P≤0.05) higher weight gain compared to the control. Significant effect on plasma urea nitrogen (PUN) and triglyceride were noted during 30th and 60th day of probiotic feeding. White blood cell counts were significantly affected by probiotic feeding during the 60th day. Concentrations of glucose and cholesterol remained unchanged throughout the experimental period. The findings suggests, under the condition of the experiment, that live probiotic feeding could have a significant role in improving weight gain and metabolism of crossbred dairy goat kids.

Keywords: probiotics, weight gain, blood biochemical indices, crossbred dairy goat kids

Procedia PDF Downloads 497
1193 Gene Editing in ErbB/HER Family-Mediated Cancer Immunology

Authors: Ling Yin

Abstract:

ErbB/HER family has an essential role in tumor progression, proliferation, invasion, metastasis, and migration. ErbB/HER-targeted therapeutic agents have emerged as effective therapeutic options to achieve excellent clinical outcomes and boost cancer drug discovery by enhancing treatment efficacy, lowering drug resistance, and minimizing systemic toxicity. Furthermore, combination therapy targeting ErbB/HER family members, as well as hormonal therapy, chemotherapy, immunotherapy, and radiotherapy, also enhance therapeutic effects for cancer immunology. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) comprise powerful tools for redefining the boundaries of cancer research. In this chapter, we provide a comprehensive evaluation of anti-cancer single and combined therapeutics to target ErbB/HER family members, which could represent promising approaches for cancer treatment. We also discuss the recent and worldwide advancements in the structures, mechanism, selectivity, and efficacy of single and combined ErbB/HER-targeted drug design and development efforts, which sheds light on their potential to improve cancer treatment. In addition, we highlight recent achievements and therapeutic potentials of ZFNs, TALENs, and CRISPR/Cas9 for cancer immunology, such as genetic analysis and manipulation. The customized application of CRISPR/Cas9-mediated targeting of ErbB2/HER2 inhibited cell proliferation, and tumorigenicity opens up the novel possibility for cancer treatment.

Keywords: ErbB/HER family, ErbB/HER-targeted therapeutic agents, combined therapy, gene editing, CRISPR/Cas9

Procedia PDF Downloads 7
1192 The Real Ambassador: How Hip Hop Culture Connects and Educates across Borders

Authors: Frederick Gooding

Abstract:

This paper explores how many Hip Hop artists have intentionally and strategically invoked sustainability principles of people, planet and profits as a means to create community, compensate for and cope with structural inequalities in society. These themes not only create community within one's country, but the powerful display and demonstration of these narratives create community on a global plane. Listeners of Hip Hop are therefore able to learn about the political events occurring in another country free of censure, and establish solidarity worldwide. Hip Hop therefore can be an ingenious tool to create self-worth, recycle positive imagery, and serve as a defense mechanism from institutional and structural forces that conspire to make an upward economic and social trajectory difficult, if not impossible for many people of color, all across the world. Although the birthplace of Hip Hop, the United States of America, is still predominately White, it has undoubtedly grown more diverse at a breath-­taking pace in recent decades. Yet, whether American mainstream media will fully reflect America’s newfound diversity remains to be seen. As it stands, American mainstream media is seen and enjoyed by diverse audiences not just in America, but all over the world. Thus, it is imperative that further inquiry is conducted about one of the fastest growing genres within one of the world’s largest and most influential media industries generating upwards of $10 billion annually. More importantly, hip hop, its music and associated culture collectively represent a shared social experience of significant value. They are important tools used both to inform and influence economic, social and political identity. Conversely, principles of American exceptionalism often prioritize American political issues over those of others, thereby rendering a myopic political view within the mainstream. This paper will therefore engage in an international contextualization of the global phenomena entitled Hip Hop by exploring the creative genius and marketing appeal of Hip Hop within the global context of information technology, political expression and social change in addition to taking a critical look at historically racialized imagery within mainstream media. Many artists the world over have been able to freely express themselves and connect with broader communities outside of their own borders, all through the sound practice of the craft of Hip Hop. An empirical understanding of political, social and economic forces within the United States will serve as a bridge for identifying and analyzing transnational themes of commonality for typically marginalized or disaffected communities facing similar struggles for survival and respect. The sharing of commonalities of marginalized cultures not only serves as a source of education outside of typically myopic, mainstream sources, but it also creates transnational bonds globally to the extent that practicing artists resonate with many of the original themes of (now mostly underground) Hip Hop as with many of the African American artists responsible for creating and fostering Hip Hop's powerful outlet of expression. Hip Hop's power of connectivity and culture-sharing transnationally across borders provides a key source of education to be taken seriously by academics.

Keywords: culture, education, global, hip hop, mainstream music, transnational

Procedia PDF Downloads 107
1191 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells

Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li

Abstract:

BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.

Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)

Procedia PDF Downloads 278
1190 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 235
1189 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 248
1188 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab

Abstract:

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations

Procedia PDF Downloads 347
1187 Mobile Network Users Amidst Ultra-Dense Networks in 5G Using an Improved Coordinated Multipoint (CoMP) Technology

Authors: Johnson O. Adeogo, Ayodele S. Oluwole, O. Akinsanmi, Olawale J. Olaluyi

Abstract:

In this 5G network, very high traffic density in densely populated areas, most especially in densely populated areas, is one of the key requirements. Radiation reduction becomes one of the major concerns to secure the future life of mobile network users in ultra-dense network areas using an improved coordinated multipoint technology. Coordinated Multi-Point (CoMP) is based on transmission and/or reception at multiple separated points with improved coordination among them to actively manage the interference for the users. Small cells have two major objectives: one, they provide good coverage and/or performance. Network users can maintain a good quality signal network by directly connecting to the cell. Two is using CoMP, which involves the use of multiple base stations (MBS) to cooperate by transmitting and/or receiving at the same time in order to reduce the possibility of electromagnetic radiation increase. Therefore, the influence of the screen guard with rubber condom on the mobile transceivers as one major piece of equipment radiating electromagnetic radiation was investigated by mobile network users amidst ultra-dense networks in 5g. The results were compared with the same mobile transceivers without screen guards and rubber condoms under the same network conditions. The 5 cm distance from the mobile transceivers was measured with the help of a ruler, and the intensity of Radio Frequency (RF) radiation was measured using an RF meter. The results show that the intensity of radiation from various mobile transceivers without screen guides and condoms was higher than the mobile transceivers with screen guides and condoms when call conversation was on at both ends.

Keywords: ultra-dense networks, mobile network users, 5g, coordinated multi-point.

Procedia PDF Downloads 111