Search results for: IT applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6401

Search results for: IT applications

701 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines

Authors: Soumyadip Banerjee, Tanmoy Maity

Abstract:

The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.

Keywords: waste to energy, wind power generation, exhaust air, power recovery

Procedia PDF Downloads 33
700 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel

Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray

Abstract:

The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.

Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect

Procedia PDF Downloads 346
699 Cultural and Natural Heritage Conservation by GIS Tourism Inventory System Project

Authors: Gamze Safak, Umut Arslanoglu

Abstract:

Cultural and tourism conservation and development zones and tourism centers are the boundaries declared for the purpose of protecting, using, and evaluating the sectoral development and planned development in areas where historical and cultural values are heavily involved and/or where tourism potential is high. The most rapidly changing regions in Turkey are tourism areas, especially the coastal areas. Planning these regions is not about only an economic gain but also a natural and physical environment and refers to a complex process. If the tourism sector is not well controlled, excessive use of natural resources and wrong location choices may cause damage to natural areas, historical values, and socio-cultural structure. Since the strategic decisions taken in the environmental order and zoning plans, which are the means of guiding the physical environment of the Ministry of Culture and Tourism, which have the authority to make plans in tourism centers, are transformed into plan decisions that find the spatial expression, comprehensive evaluation of all kinds of data, following the historical development and based on the correct and current data is required. In addition, the authority has a number of competences in tourism promotion as well as the authority to plan, leading to the necessity of taking part in the applications requiring complex analysis such as the management and integration of the country's economic, political, social and cultural resources. For this purpose, Tourism Inventory System (TES) project, which consists of a series of subsystems, has been developed in order to solve complex planning and method problems in the management of site-related information. The scope of the project is based on the integration of numerical and verbal data in the regions within the jurisdiction of the authority, and the monitoring of the historical development of urban planning studies, making the spatial data of the institution easily accessible, shared, questionable and traceable in international standards. A dynamic and continuous system design has been put into practice by utilizing the advantage of the use of Geographical Information Systems in the planning process to play a role in making the right decisions, revealing the tools of social, economic, cultural development, and preservation of natural and cultural values. This paper, which is prepared by the project team members in TES (Tourism Inventory System), will present a study regarding the applicability of GIS in cultural and natural heritage conservation.

Keywords: cultural conservation, GIS, geographic information system, tourism inventory system, urban planning

Procedia PDF Downloads 118
698 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 150
697 Creep Analysis and Rupture Evaluation of High Temperature Materials

Authors: Yuexi Xiong, Jingwu He

Abstract:

The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.

Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines

Procedia PDF Downloads 290
696 MARISTEM: A COST Action Focused on Stem Cells of Aquatic Invertebrates

Authors: Arzu Karahan, Loriano Ballarin, Baruch Rinkevich

Abstract:

Marine invertebrates, the highly diverse phyla of multicellular organisms, represent phenomena that are either not found or highly restricted in the vertebrates. These include phenomena like budding, fission, a fusion of ramets, and high regeneration power, such as the ability to create whole new organisms from either tiny parental fragment, many of which are controlled by totipotent, pluripotent, and multipotent stem cells. Thus, there is very much that can be learned from these organisms on the practical and evolutionary levels, further resembling Darwin's words, “It is not the strongest of the species that survives, nor the most intelligent, but the one most responsive to change”. The ‘stem cell’ notion highlights a cell that has the ability to continuously divide and differentiate into various progenitors and daughter cells. In vertebrates, adult stem cells are rare cells defined as lineage-restricted (multipotent at best) with tissue or organ-specific activities that are located in defined niches and further regulate the machinery of homeostasis, repair, and regeneration. They are usually categorized by their morphology, tissue of origin, plasticity, and potency. The above description not always holds when comparing the vertebrates with marine invertebrates’ stem cells that display wider ranges of plasticity and diversity at the taxonomic and the cellular levels. While marine/aquatic invertebrates stem cells (MISC) have recently raised more scientific interest, the know-how is still behind the attraction they deserve. MISC, not only are highly potent but, in many cases, are abundant (e.g., 1/3 of the entire animal cells), do not locate in permanent niches, participates in delayed-aging and whole-body regeneration phenomena, the knowledge of which can be clinically relevant. Moreover, they have massive hidden potential for the discovery of new bioactive molecules that can be used for human health (antitumor, antimicrobial) and biotechnology. The MARISTEM COST action (Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications) aims to connect the European fragmented MISC community. Under this scientific umbrella, the action conceptualizes the idea for adult stem cells that do not share many properties with the vertebrates’ stem cells, organizes meetings, summer schools, and workshops, stimulating young researchers, supplying technical and adviser support via short-term scientific studies, making new bridges between the MISC community and biomedical disciplines.

Keywords: aquatic/marine invertebrates, adult stem cell, regeneration, cell cultures, bioactive molecules

Procedia PDF Downloads 169
695 Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture

Authors: Karolina Porada

Abstract:

Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g.  air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling.  For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.

Keywords: brownfields, contemporary parks, landscape architecture, remediation

Procedia PDF Downloads 150
694 Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS

Authors: R. M. Shabbir Ahmed, Mohamed Haneef, A. R. Anwar Khan

Abstract:

Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots.

Keywords: bearing force, frictional force, finite element analysis, ANSYS

Procedia PDF Downloads 334
693 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 168
692 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
691 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
690 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 173
689 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 72
688 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast

Authors: David Ofosu-Hamilton, John K. E. Edumadze

Abstract:

Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.

Keywords: assessment, blended, cloud, paperless

Procedia PDF Downloads 248
687 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 78
686 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 285
685 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 79
684 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 163
683 Role of Grey Scale Ultrasound Including Elastography in Grading the Severity of Carpal Tunnel Syndrome - A Comparative Cross-sectional Study

Authors: Arjun Prakash, Vinutha H., Karthik N.

Abstract:

BACKGROUND: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy with an estimated prevalence of 0.6 - 5.8% in the general adult population. It is caused by compression of the Median Nerve (MN) at the wrist as it passes through a narrow osteofibrous canal. Presently, the diagnosis is established by the clinical symptoms and physical examination and Nerve conduction study (NCS) is used to assess its severity. However, it is considered to be painful, time consuming and expensive, with a false-negative rate between 16 - 34%. Ultrasonography (USG) is now increasingly used as a diagnostic tool in CTS due to its non-invasive nature, increased accessibility and relatively low cost. Elastography is a newer modality in USG which helps to assess stiffness of tissues. However, there is limited available literature about its applications in peripheral nerves. OBJECTIVES: Our objectives were to measure the Cross-Sectional Area (CSA) and elasticity of MN at the carpal tunnel using Grey scale Ultrasonography (USG), Strain Elastography (SE) and Shear Wave Elastography (SWE). We also made an attempt to independently evaluate the role of Gray scale USG, SE and SWE in grading the severity of CTS, keeping NCS as the gold standard. MATERIALS AND METHODS: After approval from the Institutional Ethics Review Board, we conducted a comparative cross sectional study for a period of 18 months. The participants were divided into two groups. Group A consisted of 54 patients with clinically diagnosed CTS who underwent NCS, and Group B consisted of 50 controls without any clinical symptoms of CTS. All Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound machine with 2 - 9 Mega Hertz linear probe. In both groups, CSA of the MN was measured on Grey scale USG, and its elasticity was measured at the carpal tunnel (in terms of Strain ratio and Shear Modulus). The variables were compared between both groups by using ‘Independent t test’, and subgroup analyses were performed using one-way analysis of variance. Receiver operating characteristic curves were used to evaluate the diagnostic performance of each variable. RESULTS: The mean CSA of the MN was 13.60 + 3.201 mm2 and 9.17 + 1.665 mm2 in Group A and Group B, respectively (p < 0.001). The mean SWE was 30.65 + 12.996 kPa and 17.33 + 2.919 kPa in Group A and Group B, respectively (p < 0.001), and the mean Strain ratio was 7.545 + 2.017 and 5.802 + 1.153 in Group A and Group B respectively (p < 0.001). CONCLUSION: The combined use of Gray scale USG, SE and SWE is extremely useful in grading the severity of CTS and can be used as a painless and cost-effective alternative to NCS. Early diagnosis and grading of CTS and effective treatment is essential to avoid permanent nerve damage and functional disability.

Keywords: carpal tunnel, ultrasound, elastography, nerve conduction study

Procedia PDF Downloads 101
682 Analysing Competitive Advantage of IoT and Data Analytics in Smart City Context

Authors: Petra Hofmann, Dana Koniel, Jussi Luukkanen, Walter Nieminen, Lea Hannola, Ilkka Donoghue

Abstract:

The Covid-19 pandemic forced people to isolate and become physically less connected. The pandemic has not only reshaped people’s behaviours and needs but also accelerated digital transformation (DT). DT of cities has become an imperative with the outlook of converting them into smart cities in the future. Embedding digital infrastructure and smart city initiatives as part of normal design, construction, and operation of cities provides a unique opportunity to improve the connection between people. The Internet of Things (IoT) is an emerging technology and one of the drivers in DT. It has disrupted many industries by introducing different services and business models, and IoT solutions are being applied in multiple fields, including smart cities. As IoT and data are fundamentally linked together, IoT solutions can only create value if the data generated by the IoT devices is analysed properly. Extracting relevant conclusions and actionable insights by using established techniques, data analytics contributes significantly to the growth and success of IoT applications and investments. Companies must grasp DT and be prepared to redesign their offerings and business models to remain competitive in today’s marketplace. As there are many IoT solutions available today, the amount of data is tremendous. The challenge for companies is to understand what solutions to focus on and how to prioritise and which data to differentiate from the competition. This paper explains how IoT and data analytics can impact competitive advantage and how companies should approach IoT and data analytics to translate them into concrete offerings and solutions in the smart city context. The study was carried out as a qualitative, literature-based research. A case study is provided to validate the preservation of company’s competitive advantage through smart city solutions. The results of the research contribution provide insights into the different factors and considerations related to creating competitive advantage through IoT and data analytics deployment in the smart city context. Furthermore, this paper proposes a framework that merges the factors and considerations with examples of offerings and solutions in smart cities. The data collected through IoT devices, and the intelligent use of it, can create competitive advantage to companies operating in smart city business. Companies should take into consideration the five forces of competition that shape industries and pay attention to the technological, organisational, and external contexts which define factors for consideration of competitive advantages in the field of IoT and data analytics. Companies that can utilise these key assets in their businesses will most likely conquer the markets and have a strong foothold in the smart city business.

Keywords: data analytics, smart cities, competitive advantage, internet of things

Procedia PDF Downloads 133
681 Pill-Box Dispenser as a Strategy for Therapeutic Management: A Qualitative Evaluation

Authors: Bruno R. Mendes, Francisco J. Caldeira, Rita S. Luís

Abstract:

Population ageing is directly correlated to an increase in medicine consumption. Beyond the latter and the polymedicated profile of elderly, it is possible to see a need for pharmacotherapeutic monitoring due to cognitive and physical impairment. In this sense, the tracking, organization and administration of medicines become a daily challenge and the pill-box dispenser system a solution. The pill-box dispenser (system) consists in a small compartmentalized container to unit dose organization, which means a container able to correlate the patient’s prescribed dose regimen and the time schedule of intake. In many European countries, this system is part of pharmacist’s role in clinical pharmacy. Despite this simple solution, therapy compliance is only possible if the patient adheres to the system, so it is important to establish a qualitative and quantitative analysis on the perception of the patient on the benefits and risks of the pill-box dispenser as well as the identification of the ideal system. The analysis was conducted through an observational study, based on the application of a standardized questionnaire structured with the numerical scale of Likert (5 levels) and previously validated on the population. The study was performed during a limited period of time and under a randomized sample of 188 participants. The questionnaire consisted of 22 questions: 6 background measures and 16 specific measures. The standards for the final comparative analysis were obtained through the state-of-the-art on the subject. The study carried out using the Likert scale afforded a degree of agreement and discordance between measures (Sample vs. Standard) of 56,25% and 43,75%, respectively. It was concluded that the pill-box dispenser has greater acceptance among a younger population, that was not the initial target of the system. However, this allows us to guarantee a high adherence in the future. Additionally, it was noted that the cost associated with this service is not a limiting factor for its use. The pill-box dispenser system, as currently implemented, demonstrates an important weakness regarding the quality and effectiveness of the medicines, which is not understood by the patient, revealing a significant lack of literacy when it concerns with medicine area. The characteristics of an ideal system remain unchanged, which means that the size, appearance and availability of information in the pill-box continue to be indispensable elements for the compliance with the system. The pill-box dispenser remains unsuitable regarding container size and the type of treatment to which it applies. Despite that, it might be a future standard for clinical pharmacy, allowing a differentiation of the pharmacist role, as well as a wider range of applications to other age groups and treatments.

Keywords: clinical pharmacy, medicines, patient safety, pill-box dispenser

Procedia PDF Downloads 197
680 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 526
679 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du

Abstract:

The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.

Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Procedia PDF Downloads 137
678 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 435
677 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 67
676 Psychological Variables Predicting Academic Achievement in Argentinian Students: Scales Development and Recent Findings

Authors: Fernandez liporace, Mercedes Uriel Fabiana

Abstract:

Academic achievement in high school and college students is currently a matter of concern. National and international assessments show high schoolers as low achievers, and local statistics indicate alarming dropout percentages in this educational level. Even so, 80% of those students intend attending higher education. On the other hand, applications to Public National Universities are free and non-selective by examination procedures. Though initial registrations are massive (307.894 students), only 50% of freshmen pass their first year classes, and 23% achieves a degree. Low performances use to be a common problem. Hence, freshmen adaptation, their adjustment, dropout and low academic achievement arise as topics of agenda. Besides, the hinge between high school and college must be examined in depth, in order to get an integrated and successful path from one educational stratum to the other. Psychology aims at developing two main research lines to analyse the situation. One regarding psychometric scales, designing and/or adapting tests, examining their technical properties and their theoretical validity (e.g., academic motivation, learning strategies, learning styles, coping, perceived social support, parenting styles and parental consistency, paradoxical personality as correlated to creative skills, psychopathological symptomatology). The second research line emphasizes relationships within the variables measured by the former scales, facing the formulation and testing of predictive models of academic achievement, establishing differences by sex, age, educational level (high school vs college), and career. Pursuing these goals, several studies were carried out in recent years, reporting findings and producing assessment technology useful to detect students academically at risk as well as good achievers. Multiple samples were analysed totalizing more than 3500 participants (2500 from college and 1000 from high school), including descriptive, correlational, group differences and explicative designs. A brief on the most relevant results is presented. Providing information to design specific interventions according to every learner’s features and his/her educational environment comes up as a mid-term accomplishment. Furthermore, that information might be helpful to adapt curricula by career, as well as for implementing special didactic strategies differentiated by sex and personal characteristics.

Keywords: academic achievement, higher education, high school, psychological assessment

Procedia PDF Downloads 369
675 User Experience in Relation to Eye Tracking Behaviour in VR Gallery

Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski

Abstract:

Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.

Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication

Procedia PDF Downloads 42
674 Development of Instructional Material Using Scientific Approach to Make the Nature of Science (NOS) and Critical Thinking Explicit on Chemical Bonding and Intermolecular Forces Topics

Authors: Ivan Ashif Ardhana, Intan Mahanani

Abstract:

Chemistry education tends to change from triplet representation among macroscopic, microscopic, and symbolic to tetrahedron shape. This change set the aspect of human element on the top of learning. Meaning that students are expected to solve the problems involving the ethic, morality, and humanity through the class. Ability to solve the problems connecting either theories or applications is called scientific literacy which have been implemented in curriculum 2013 implicitly. Scientific literacy has an aspect of nature science and critical thinking. Both can be integrated to learning using scientific approach and scientific inquiry. Unfortunately, students’ ability of scientific literacy in Indonesia is far from expectation. A survey from PISA had proven it. Scientific literacy of Indonesian students is always at bottom five position from 2002 till 2012. Improving a scientific literacy needs many efforts against them. Developing an instructional material based on scientific approach is one kind of that efforts. Instructional material contains both aspect of nature of science and critical thinking which is instructed explicitly to improve the students’ understanding about science. Developing goal is to produce a prototype and an instructional material using scientific approach whose chapter is chemical bonding and intermolecular forces for high school students grade ten. As usual, the material is subjected to get either quantitative mark or suggestion through validation process using validation sheet instrument. Development model is adapted from 4D model containing four steps. They are define, design, develop, and disseminate. Nevertheless, development of instructional material had only done until third step. The final step wasn’t done because of time, cost, and energy limitations. Developed instructional material had been validated by four validators. They are coming from chemistry lecture and high school’s teacher which two at each. The result of this development research shown the average of quantitative mark of students’ book is 92.75% with very proper in criteria. Given at same validation process, teacher’s guiding book got the average mark by 96.98%, similar criteria with students’ book. Qualitative mark including both comments and suggestions resulted from validation process were used as consideration for the revision. The result concluded us how the instructional materials using scientific approach to explicit nature of science and critical thinking on the topic of chemical bonding and intermolecular forces are very proper if they are used at learning activity.

Keywords: critical thinking, instructional material, nature of science, scientific literacy

Procedia PDF Downloads 265
673 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 73
672 Holographic Art as an Approach to Enhance Visual Communication in Egyptian Community: Experimental Study

Authors: Diaa Ahmed Mohamed Ahmedien

Abstract:

Nowadays, it cannot be denied that the most important interactive arts trends have appeared as a result of significant scientific mutations in the modern sciences, and holographic art is not an exception, where it is considered as a one of the most important major contemporary interactive arts trends in visual arts. Holographic technique had been evoked through the modern physics application in late 1940s, for the improvement of the quality of electron microscope images by Denis Gabor, until it had arrived to Margaret Benyon’s art exhibitions, and then it passed through a lot of procedures to enhance its quality and artistic applications technically and visually more over 70 years in visual arts. As a modest extension to these great efforts, this research aimed to invoke extraordinary attempt to enroll sample of normal people in Egyptian community in holographic recording program to record their appreciated objects or antiques, therefore examine their abilities to interact with modern techniques in visual communication arts. So this research tried to answer to main three questions: 'can we use the analog holographic techniques to unleash new theoretical and practical knowledge in interactive arts for public in Egyptian community?', 'to what extent holographic art can be familiar with public and make them able to produce interactive artistic samples?', 'are there possibilities to build holographic interactive program for normal people which lead them to enhance their understanding to visual communication in public and, be aware of interactive arts trends?' This research was depending in its first part on experimental methods, where it conducted in Laser lab at Cairo University, using Nd: Yag Laser 532 nm, and holographic optical layout, with selected samples of Egyptian people that they have been asked to record their appreciated object, after they had already learned recording methods, and in its second part on a lot of discussion panel had conducted to discuss the result and how participants felt towards their holographic artistic products through survey, questionnaires, take notes and critiquing holographic artworks. Our practical experiments and final discussions have already lead us to say that this experimental research was able to make most of participants pass through paradigm shift in their visual and conceptual experiences towards more interaction with contemporary visual arts trends, as an attempt to emphasize to the role of mature relationship between the art, science and technology, to spread interactive arts out in our community through the latest scientific and artistic mutations around the world and the role of this relationship in our societies particularly with those who have never been enrolled in practical arts programs before.

Keywords: Egyptian community, holographic art, laser art, visual art

Procedia PDF Downloads 479