Search results for: random number generation/generators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14806

Search results for: random number generation/generators

14266 On Performance of Cache Replacement Schemes in NDN-IoT

Authors: Rasool Sadeghi, Sayed Mahdi Faghih Imani, Negar Najafi

Abstract:

The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases.

Keywords: NDN-IoT, cache replacement, performance, ndnSIM

Procedia PDF Downloads 362
14265 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria

Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar

Abstract:

The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.

Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator

Procedia PDF Downloads 40
14264 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.

Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis

Procedia PDF Downloads 43
14263 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 443
14262 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)

Procedia PDF Downloads 506
14261 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-worls, resilience to damage

Procedia PDF Downloads 542
14260 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems

Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai

Abstract:

The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).

Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation

Procedia PDF Downloads 251
14259 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 134
14258 Analysis of Generation Z and Perceptions of Conscious Consumption in the Light of Primary Data

Authors: Mónika Garai-Fodor, Nikoett Huszak

Abstract:

In the present study, we investigate the cognitive aspects of conscious consumer behaviour among Generation Z members. In our view, conscious consumption can greatly help to foster social responsibility, environmental and health-conscious behaviour, and ethical consumerism. We believe that it is an important educational task to promote and reinforce consumer behaviour among young people that increases and creates community value. In this study, we analysed the dimensions of young people's conscious consumer behaviour and its manifestation in concrete forms of behaviour, purchasing, and consumer decisions. As a result of a survey conducted through a snowball sampling procedure, the responses of 200 respondents who are members of Generation Z were analysed. The research analysed young people's perceptions and opinions of conscious living and their perceptions of self-conscious consumer behaviour. The primary research used a pre-tested standardised online questionnaire. Data were evaluated using bivariate and multivariate analyses in addition to descriptive statistics. The research presents results that are valid for the sample, and we plan to continue with a larger sample survey and extend it to other generations. Our main objective is to analyse what conscious living means to young people, what behavioural elements they associate with it, and what activities they themselves undertake in this context.

Keywords: generation Z, conscious consumption, primary research, sustainability

Procedia PDF Downloads 37
14257 Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya

Authors: Emir Borovac, Sedat İnan

Abstract:

The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration.

Keywords: tanezzuft formation, ghadames basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 25
14256 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 112
14255 Kansei Engineering Applied to the Design of Rural Primary Education Classrooms: Design-Based Learning Case

Authors: Jimena Alarcon, Andrea Llorens, Gabriel Hernandez, Maritza Palma, Lucia Navarrete

Abstract:

The research has funding from the Government of Chile and is focused on defining the design of rural primary classroom that stimulates creativity. The relevance of the study consists of its capacity to define adequate educational spaces for the implementation of the design-based learning (DBL) methodology. This methodology promotes creativity and teamwork, generating a meaningful learning experience for students, based on the appreciation of their environment and the generation of projects that contribute positively to their communities; also, is an inquiry-based form of learning that is based on the integration of design thinking and the design process into the classroom. The main goal of the study is to define the design characteristics of rural primary school classrooms, associated with the implementation of the DBL methodology. Along with the change in learning strategies, it is necessary to change the educational spaces in which they develop. The hypothesis indicates that a change in the space and equipment of the classrooms based on the emotions of the students will motivate better learning results based on the implementation of a new methodology. In this case, the pedagogical dynamics require an important interaction between the participants, as well as an environment favorable to creativity. Methodologies from Kansei engineering are used to know the emotional variables associated with their definition. The study is done to 50 students between 6 and 10 years old (average age of seven years), 48% of men and 52% women. Virtual three-dimensional scale models and semantic differential tables are used. To define the semantic differential, self-applied surveys were carried out. Each survey consists of eight separate questions in two groups: question A to find desirable emotions; question B related to emotions. Both questions have a maximum of three alternatives to answer. Data were tabulated with IBM SPSS Statistics version 19. Terms referred to emotions are grouped into twenty concepts with a higher presence in surveys. To select the values obtained as part of the implementation of Semantic Differential, a number expected of 'chi-square test (x2)' frequency calculated for classroom space is considered lower limit. All terms over the N expected a cut point, are included to prepare tables for surveys to find a relation between emotion and space. Statistic contrast (Chi-Square) represents significance level ≥ 0, indicator that frequencies appeared are not random. Then, the most representative terms depend on the variable under study: a) definition of textures and color of vertical surfaces is associated with emotions such as tranquility, attention, concentration, creativity; and, b) distribution of the equipment of the rooms, with emotions associated with happiness, distraction, creativity, freedom. The main findings are linked to the generation of classrooms according to diverse DBL team dynamics. Kansei engineering is the appropriate methodology to know the emotions that students want to feel in the classroom space.

Keywords: creativity, design-based learning, education spaces, emotions

Procedia PDF Downloads 141
14254 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 132
14253 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 35
14252 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater

Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy

Abstract:

Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.

Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater

Procedia PDF Downloads 386
14251 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space

Authors: Xin Chen

Abstract:

It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.

Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency

Procedia PDF Downloads 75
14250 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals

Authors: Bharatendra Rai

Abstract:

Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.

Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression

Procedia PDF Downloads 350
14249 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 559
14248 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 377
14247 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 546
14246 Modeling of Virtual Power Plant

Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.

Abstract:

Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.

Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling

Procedia PDF Downloads 61
14245 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation

Authors: Praveen Kumar, R. Uma, R. P. Sharma

Abstract:

This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.

Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation

Procedia PDF Downloads 71
14244 Current Status and a Forecasting Model of Community Household Waste Generation: A Case Study on Ward 24 (Nirala), Khulna, Bangladesh

Authors: Md. Nazmul Haque, Mahinur Rahman

Abstract:

The objective of the research is to determine the quantity of household waste generated and forecast the future condition of Ward No 24 (Nirala). For performing that, three core issues are focused: (i) the capacity and service area of the dumping stations; (ii) the present waste generation amount per capita per day; (iii) the responsibility of the local authority in the household waste collection. This research relied on field survey-based data collection from all stakeholders and GIS-based secondary analysis of waste collection points and their coverage. However, these studies are mostly based on the inherent forecasting approaches, cannot predict the amount of waste correctly. The findings of this study suggest that Nirala is a formal residential area introducing a better approach to the waste collection - self-controlled and collection system. Here, a forecasting model proposed for waste generation as Y = -2250387 + 1146.1 * X, where X = year.

Keywords: eco-friendly environment, household waste, linear regression, waste management

Procedia PDF Downloads 284
14243 Status of Hazardous Waste Generation and Its Impacts on Environment and Human Health: A Study in West Bengal

Authors: Sk Ajim Ali

Abstract:

The present study is an attempt to overview on the major environmental and health impacts due to hazardous waste generation and poor management. In present scenario, not only hazardous waste, but as a common term ‘Waste’ is one of the acceptable and thinkable environmental issues. With excessive increasing population, industrialization and standardization of human’s life style heap in extra waste generation which is directly or indirectly related with hazardous waste generation. Urbanization and population growth are solely responsible for establishing industrial sector and generating various Hazardous Waste (HW) and concomitantly poor management practice arising adverse effect on environment and human health. As compare to other Indian state, West Bengal is not too much former in HW generation. West Bengal makes a rank of 7th in HW generation followed by Maharashtra, Gujarat, Tamil Nadu, U.P, Punjab and Andhra Pradesh. During the last 30 years, the industrial sectors in W.B have quadrupled in size, during 1995 there were only 440 HW generating Units in West Bengal which produced 129826 MTA hazardous waste but in 2011, it rose up into 609 units and it produced about 259777 MTA hazardous waste. So, the notable thing is that during a 15 year interval there increased 169 waste generating units but it produced about 129951 MTA of hazardous waste. Major chemical industries are the main sources of HW and causes of adverse effect on the environment and human health. HW from industrial sectors contains heavy metals, cyanides, pesticides, complex aromatic compounds (i.e. PCB) and other chemical which are toxic, flammable, reactive, and corrosive and have explosive properties which highly affect the surrounding environment and human health in and around he disposal sites. The main objective of present study is to highlight on the sources and components of hazardous waste in West Bengal and impacts of improper HW management on health and environment. This study is carried out based on a secondary source of data and qualitative method of research. The secondary data has been collected annual report of WBPCB, WHO’s report, research paper, article, books and so on. It has been found that excessive HW generation from various sources and communities has serious health hazards that lead to the spreading of infectious disease and environmental change.

Keywords: environmental impacts, existing HW generation and management practice, hazardous waste (HW), health impacts, recommendation and planning

Procedia PDF Downloads 282
14242 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 319
14241 Age-Stereotypes of Emerging Adults within the South African Work Environment

Authors: Bronwyn Bell, Lizelle Brink

Abstract:

Workplaces of today are populated by employees from different generations; emerging adults being the most recent demographic group entering the workplace. These individuals form part of Generation Y and are between the ages of 18 to 25. Emerging adults bring unique and different characteristics to the workplace. These individuals also differ from other generations with regards to their employment desires and ways of working. Age-stereotypes of emerging adults is, therefore, a common occurrence within workplaces. The general objective of the study was therefore to explore age-related stereotypes experienced regarding emerging adults within the South African work context and to determine the influences thereof. A qualitative research design from the social constructivism paradigm was employed in order to reach the objectives of this research study. A phenomenological approach using a combination of purposive and snowball sampling was employed within this study. A sample of 25 employees (N = 25) from various South African organisations were interviewed for the purpose of this study and formed part of three generations namely Generation Y, Generation X and Baby Boomers. In order to analyse the collected data, the steps of thematic analysis were used. The main findings of this study indicated that emerging adults experience various positive and negative stereotypes within the workplace. Results further indicated that these stereotypes influence emerging adults in a behavioural, cognitive and emotional manner. These stereotypes also influence the way emerging adults are treated by older employees within the workplace. Recommendations based on the results of this study were made for future research and practice. This study creates awareness within organisations regarding age-stereotypes of emerging adults. By being aware, employees can manage the influences thereof within the workplace.

Keywords: age-stereotypes, baby boomers, emerging adults, generation x, generation y, South African work environment, stereotypes

Procedia PDF Downloads 292
14240 Different Sampling Schemes for Semi-Parametric Frailty Model

Authors: Nursel Koyuncu, Nihal Ata Tutkun

Abstract:

Frailty model is a survival model that takes into account the unobserved heterogeneity for exploring the relationship between the survival of an individual and several covariates. In the recent years, proposed survival models become more complex and this feature causes convergence problems especially in large data sets. Therefore selection of sample from these big data sets is very important for estimation of parameters. In sampling literature, some authors have defined new sampling schemes to predict the parameters correctly. For this aim, we try to see the effect of sampling design in semi-parametric frailty model. We conducted a simulation study in R programme to estimate the parameters of semi-parametric frailty model for different sample sizes, censoring rates under classical simple random sampling and ranked set sampling schemes. In the simulation study, we used data set recording 17260 male Civil Servants aged 40–64 years with complete 10-year follow-up as population. Time to death from coronary heart disease is treated as a survival-time and age, systolic blood pressure are used as covariates. We select the 1000 samples from population using different sampling schemes and estimate the parameters. From the simulation study, we concluded that ranked set sampling design performs better than simple random sampling for each scenario.

Keywords: frailty model, ranked set sampling, efficiency, simple random sampling

Procedia PDF Downloads 209
14239 Optimizing Load Shedding Schedule Problem Based on Harmony Search

Authors: Almahd Alshereef, Ahmed Alkilany, Hammad Said, Azuraliza Abu Bakar

Abstract:

From time to time, electrical power grid is directed by the National Electricity Operator to conduct load shedding, which involves hours' power outages on the area of this study, Southern Electrical Grid of Libya (SEGL). Load shedding is conducted in order to alleviate pressure on the National Electricity Grid at times of peak demand. This approach has chosen a set of categories to study load-shedding problem considering the effect of the demand priorities on the operation of the power system during emergencies. Classification of category region for load shedding problem is solved by a new algorithm (the harmony algorithm) based on the "random generation list of category region", which is a possible solution with a proximity degree to the optimum. The obtained results prove additional enhancements compared to other heuristic approaches. The case studies are carried out on SEGL.

Keywords: optimization, harmony algorithm, load shedding, classification

Procedia PDF Downloads 394
14238 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 205
14237 Transient Heat Transfer: Experimental Investigation near the Critical Point

Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut

Abstract:

In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.

Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators

Procedia PDF Downloads 218