Search results for: polynomial fuzzy
420 An Evaluation of Barriers to Implement Reverse Logistics: A Case Study of Indian Fastener Industry
Authors: D. Garg, S. Luthra, A. Haleem
Abstract:
Reverse logistics (RL) is supposed to be a systematic procedure that helps in improving the environmental hazards and maintain business sustainability for industries. Industries in Indian are now opting for adoption of RL techniques in business. But, RL practices are not popular in Indian industries because of many barriers for its successful implementation. Therefore, need arises to identify and evaluate the barriers to implement RL practices by taking an Indian industries perspective. Literature review approach and case study approach have been adapted to identify relevant barriers to implement RL practices. Further, Fuzzy Decision Making Trial and Evaluation Laboratory methodology has been brought into use for evaluating causal relationships among the barriers to implement RL practices. Seven barriers out of ten barriers have been categorized into the cause group and remaining into effect group. This research will help Indian industries to manage these barriers towards effective implementing RL practices.Keywords: barriers, decision making trial and evaluation laboratory (DEMATEL), fuzzy set theory, Indian industries, reverse logistics (RL)
Procedia PDF Downloads 329419 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area
Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo
Abstract:
Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine
Procedia PDF Downloads 355418 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller
Authors: Feleke Tsegaye
Abstract:
The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path
Procedia PDF Downloads 58417 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 98416 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining
Authors: Abubakar Sadiq Mensah
Abstract:
The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.Keywords: eigenvalues, eigenvectors, population, growth/stability
Procedia PDF Downloads 523415 Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability
Authors: Mahsa Pishdar
Abstract:
Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain.Keywords: food traceability, industry 4.0, internet of things, block chain, best worst method, marcos
Procedia PDF Downloads 207414 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates
Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery
Abstract:
Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop
Procedia PDF Downloads 96413 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship
Authors: Danijela Tuljak-Suban, Valter Suban
Abstract:
Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing of its physical or chemical characteristics considerably influences the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure stability conditions that limit the deterioration, since the value of the deterioration rate could be easily influenced by the transportation mode. Fuzzy definition of variables allows taking into account these variations. Furthermore an appropriate choice of the defuzzification method permits to adapt results, as much as possible, to real conditions. In the article will be applied the those methods to the relationship between the deterioration rate of perishable goods and transportation by ship, with the aim: (a) to minimize the total costs function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) to improve supply chain sustainability by reducing the environmental impact and waste disposal costs.Keywords: perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability
Procedia PDF Downloads 544412 Coupling Fuzzy Analytic Hierarchy Process with Storm Water Management Model for Site Selection of Appropriate Adaptive Measures
Authors: Negin Binesh, Mohammad Hossein Niksokhan, Amin Sarang
Abstract:
Best Management Practices (BMPs) are considered as one of the most important structural adaptive measures to climate change and urban development challenges in recent decades. However, not every location is appropriate for applying BMPs in the watersheds. In this paper, location prioritization of two kinds of BMPs was done: Pourous pavement and Detention pond. West Flood-Diversion (WFD) catchment in northern parts of Tehran, Iran, was considered as the case study. The methodology includes integrating the results of Storm Water Management Model (SWMM) into Fuzzy Analytic Hierarchy Process (FAHP) method using Geographic Information System (GIS). The results indicate that mostly suburban areas of the watershed in northern parts are appropriate for applying detention basin, and downstream high-density urban areas are more suitable for using permeable pavement.Keywords: adaptive measures, BMPs, location prioritization, urban flooding
Procedia PDF Downloads 366411 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study
Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya
Abstract:
The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory
Procedia PDF Downloads 409410 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm
Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan
Abstract:
Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power
Procedia PDF Downloads 86409 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design
Authors: Yuan-Jye Tseng, Yi-Shiuan Chen
Abstract:
In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process
Procedia PDF Downloads 676408 Clustering Based Level Set Evaluation for Low Contrast Images
Authors: Bikshalu Kalagadda, Srikanth Rangu
Abstract:
The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization
Procedia PDF Downloads 352407 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram
Abstract:
The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems
Procedia PDF Downloads 357406 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.Keywords: geospatial, geo-analytics, self-organizing map, customer-centric
Procedia PDF Downloads 184405 Proposing an Index for Determining Key Knowledge Management Processes in Decision Making Units Using Fuzzy Quality Function Deployment (QFD), Data Envelopment Analysis (DEA) Method
Authors: Sadegh Abedi, Ali Yaghoubi, Hamidreza Mashatzadegan
Abstract:
This paper proposes an approach to identify key processes required by an organization in the field of knowledge management and aligning them with organizational objectives. For this purpose, first, organization’s most important non-financial objectives which are impacted by knowledge management processes are identified and then, using a quality house, are linked with knowledge management processes which are regarded as technical elements. Using this method, processes that are in need of improvement and more attention are prioritized based on their significance. This means that if a process has more influence on organization’s objectives and is in a dire situation comparing to others, is prioritized for choice and improvement. In this research process dominance is considered to be an influential element in process ranking (in addition to communication matrix). This is the reason for utilizing DEA techniques for prioritizing processes in quality house. Results of implementing the method in Khuzestan steel company represents this method’s capability of identifying key processes that require improvements in organization’s knowledge management system.Keywords: knowledge management, organizational performance, fuzzy data, envelopment analysis
Procedia PDF Downloads 420404 Evaluation of the Matching Optimization of Human-Machine Interface Matching in the Cab
Authors: Yanhua Ma, Lu Zhai, Xinchen Wang, Hongyu Liang
Abstract:
In this paper, by understanding the development status of the human-machine interface in today's automobile cab, a subjective and objective evaluation system for evaluating the optimization of human-machine interface matching in automobile cab was established. The man-machine interface of the car cab was divided into a software interface and a hard interface. Objective evaluation method of software human factor analysis is used to evaluate the hard interface matching; The analytic hierarchy process is used to establish the evaluation index system for the software interface matching optimization, and the multi-level fuzzy comprehensive evaluation method is used to evaluate hard interface machine. This article takes Dongfeng Sokon (DFSK) C37 model automobile as an example. The evaluation method given in the paper is used to carry out relevant analysis and evaluation, and corresponding optimization suggestions are given, which have certain reference value for designers.Keywords: analytic hierarchy process, fuzzy comprehension evaluation method, human-machine interface, matching optimization, software human factor analysis
Procedia PDF Downloads 158403 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids
Authors: Yen-Hui Chen, Terry Walker
Abstract:
As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction
Procedia PDF Downloads 446402 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 340401 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 90400 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques
Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada
Abstract:
Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer
Procedia PDF Downloads 150399 Jacobson Semisimple Skew Inverse Laurent Series Rings
Authors: Ahmad Moussavi
Abstract:
In this paper, we are concerned with the Jacobson semisimple skew inverse Laurent series rings R((x−1; α, δ)) and the skew Laurent power series rings R[[x, x−1; α]], where R is an associative ring equipped with an automorphism α and an α-derivation δ. Examples to illustrate and delimit the theory are provided.Keywords: skew polynomial rings, Laurent series, skew inverse Laurent series rings
Procedia PDF Downloads 166398 Rough Oscillatory Singular Integrals on Rⁿ
Authors: H. M. Al-Qassem, L. Cheng, Y. Pan
Abstract:
In this paper we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log(deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Among key ingredients of our methods are an L¹→L² estimate and extrapolation.Keywords: oscillatory singular integral, rough kernel, singular integral, Orlicz spaces, Block spaces, extrapolation, L^{p} boundedness
Procedia PDF Downloads 358397 Companies’ Internationalization: Multi-Criteria-Based Prioritization Using Fuzzy Logic
Authors: Jorge Anibal Restrepo Morales, Sonia Martín Gómez
Abstract:
A model based on a logical framework was developed to quantify SMEs' internationalization capacity. To do so, linguistic variables, such as human talent, infrastructure, innovation strategies, FTAs, marketing strategies, finance, etc. were integrated. It is argued that a company’s management of international markets depends on internal factors, especially capabilities and resources available. This study considers internal factors as the biggest business challenge because they force companies to develop an adequate set of capabilities. At this stage, importance and strategic relevance have to be defined in order to build competitive advantages. A fuzzy inference system is proposed to model the resources, skills, and capabilities that determine the success of internationalization. Data: 157 linguistic variables were used. These variables were defined by international trade entrepreneurs, experts, consultants, and researchers. Using expert judgment, the variables were condensed into18 factors that explain SMEs’ export capacity. The proposed model is applied by means of a case study of the textile and clothing cluster in Medellin, Colombia. In the model implementation, a general index of 28.2 was obtained for internationalization capabilities. The result confirms that the sector’s current capabilities and resources are not sufficient for a successful integration into the international market. The model specifies the factors and variables, which need to be worked on in order to improve export capability. In the case of textile companies, the lack of a continuous recording of information stands out. Likewise, there are very few studies directed towards developing long-term plans, and., there is little consistency in exports criteria. This method emerges as an innovative management tool linked to internal organizational spheres and their different abilities.Keywords: business strategy, exports, internationalization, fuzzy set methods
Procedia PDF Downloads 296396 Performance Evaluation of Microcontroller-Based Fuzzy Controller for Fruit Drying System
Authors: Salisu Umar
Abstract:
Fruits are a seasonal crop and get spoiled quickly. They are dried to be preserved for a long period. The natural drying process requires more time. The investment on space requirement and infrastructure is large, and cannot be afforded by a middle class farmer. Therefore there is a need for a comparatively small unit with reduced drying times, which can be afforded by a middle class farmer. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. Firstly, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Secondly, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Thirdly the microcontroller idles disconnecting the power to the chamber after the weight of the fruits is reduced to a known value of its original weight. This activates a buzzer for duration of ten seconds to indicate the end of the drying process. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits compared with the existing dryers.Keywords: fruit, fuzzy controller, microcontroller, temperature, weight and humidity
Procedia PDF Downloads 445395 Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper
Authors: Wael Ata
Abstract:
Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitationsKeywords: Tracked Vehicles, MR dampers, Skyhook controller, fuzzy logic controller
Procedia PDF Downloads 122394 The Location of Park and Ride Facilities Using the Fuzzy Inference Model
Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas
Abstract:
Contemporary cities are facing serious congestion and parking problems. In urban transport policy the introduction of the park and ride system (P&R) is an increasingly popular way of limiting vehicular traffic. The determining of P&R facilities location is a key aspect of the system. Criteria for assessing the quality of the selected location are formulated generally and descriptively. The research outsourced to specialists are expensive and time consuming. The most focus is on the examination of a few selected places. The practice has shown that the choice of the location of these sites in a intuitive way without a detailed analysis of all the circumstances, often gives negative results. Then the existing facilities are not used as expected. Methods of location as a research topic are also widely taken in the scientific literature. Built mathematical models often do not bring the problem comprehensively, e.g. assuming that the city is linear, developed along one important communications corridor. The paper presents a new method where the expert knowledge is applied to fuzzy inference model. With such a built system even a less experienced person could benefit from it, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed location can also be verified in a short time. The proposed method is intended for testing of car parks location in a city. The paper will show selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analysis of existing objects will also be shown in the paper and they will be confronted with the opinions of the system users, with particular emphasis on unpopular locations. The research are executed using the fuzzy inference model which was built and described in more detail in the earlier paper of the authors. The results of analyzes are compared to documents of P&R facilities location outsourced by the city and opinions of existing facilities users expressed on social networking sites. The research of existing facilities were conducted by means of the fuzzy model. The results are consistent with actual users feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. The performed studies show that the method has been confirmed. The method can be applied in urban planning of the P&R facilities location in relation to the accompanying functions. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.Keywords: fuzzy logic inference, park and ride system, P&R facilities, P&R location
Procedia PDF Downloads 325393 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 51392 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 88391 Material Handling Equipment Selection Using Fuzzy AHP Approach
Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai
Abstract:
This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)
Procedia PDF Downloads 434