Search results for: hybrid recommender system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18716

Search results for: hybrid recommender system

18176 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System

Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma

Abstract:

This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.

Keywords: EDFA, FRA, WDM, Q factor, BER

Procedia PDF Downloads 354
18175 Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank

Authors: Sung Uk Ryu, Byoung Gook Jeon, Sung-Jae Yi, Dong-Jin Euh

Abstract:

In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant.

Keywords: passive safety injection systems, steam penetration, direct contact condensation, particle image velocimetry

Procedia PDF Downloads 395
18174 Enhancing AI for Global Impact: Conversations on Improvement and Societal Benefits

Authors: C. P. Chukwuka, E. V. Chukwuka, F. Ukwadi

Abstract:

This paper focuses on the advancement and societal impact of artificial intelligence (AI) systems. It explores the need for a theoretical framework in corporate governance, specifically in the context of 'hybrid' companies that have a mix of private and government ownership. The paper emphasizes the potential of AI to address challenges faced by these companies and highlights the importance of the less-explored state model in corporate governance. The aim of this research is to enhance AI systems for global impact and positive societal outcomes. It aims to explore the role of AI in refining corporate governance in hybrid companies and uncover nuanced insights into complex ownership structures. The methodology involves leveraging the capabilities of AI to address the challenges faced by hybrid companies in corporate governance. The researchers will analyze existing theoretical frameworks in corporate governance and integrate AI systems to improve problem-solving and understanding of intricate systems. The paper suggests that improved AI systems have the potential to shape a more informed and responsible corporate landscape. AI can uncover nuanced insights and navigate complex ownership structures in hybrid companies, leading to greater efficacy and positive societal outcomes. The theoretical importance of this research lies in the exploration of the role of AI in corporate governance, particularly in the context of hybrid companies. By integrating AI systems, the paper highlights the potential for improved problem-solving and understanding of intricate systems, contributing to a more informed and responsible corporate landscape. The data for this research will be collected from existing literature on corporate governance, specifically focusing on hybrid companies. Additionally, data on AI capabilities and their application in corporate governance will be collected. The collected data will be analyzed through a systematic review of existing theoretical frameworks in corporate governance. The researchers will also analyze the capabilities of AI systems and their potential application in addressing the challenges faced by hybrid companies. The findings will be synthesized and compared to identify patterns and potential improvements. The research concludes that AI systems have the potential to enhance corporate governance in hybrid companies, leading to greater efficacy and positive societal outcomes. By leveraging AI capabilities, nuanced insights can be uncovered, and complex ownership structures can be navigated, shaping a more informed and responsible corporate landscape. The findings highlight the importance of integrating AI in refining problem-solving and understanding intricate systems for global impact.

Keywords: advancement, artificial intelligence, challenges, societal impact

Procedia PDF Downloads 56
18173 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 38
18172 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 94
18171 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem

Authors: Gaohuizi Guo, Ning Zhang

Abstract:

Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.

Keywords: firefly algorithm, hybrid algorithm, multi-objective optimization, sine cosine algorithm

Procedia PDF Downloads 168
18170 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy

Authors: M. Veeresham

Abstract:

The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.

Keywords: refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties

Procedia PDF Downloads 143
18169 Functional Nanomaterials for Environmental Applications

Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine

Abstract:

The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.

Keywords: hybrid materials, porous silicon, peptide, metal detection

Procedia PDF Downloads 499
18168 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres

Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif

Abstract:

With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.

Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite

Procedia PDF Downloads 255
18167 Nursing Education in the Pandemic Time: Case Study

Authors: Jaana Sepp, Ulvi Kõrgemaa, Kristi Puusepp, Õie Tähtla

Abstract:

COVID-19 was officially recognized as a pandemic in late 2019 by the WHO, and it has led to changes in the education sector. Educational institutions were closed, and most schools adopted distance learning. Estonia is known as a digitally well-developed country. Based on that, in the pandemic time, nursing education continued, and new technological solutions were implemented. To provide nursing education, special focus was paid on quality and flexibility. The aim of this paper is to present administrative, digital, and technological solutions which support Estonian nursing educators to continue the study process in the pandemic time and to develop a sustainable solution for nursing education for the future. This paper includes the authors’ analysis of the documents and decisions implemented in the institutions through the pandemic time. It is a case study of Estonian nursing educators. Results of the analysis show that the implementation of distance learning principles challenges the development of innovative strategies and technics for the assessment of student performance and educational outcomes and implement new strategies to encourage student engagement in the virtual classroom. Additionally, hospital internships were canceled, and the simulation approach was deeply implemented as a new opportunity to develop and assess students’ practical skills. There are many other technical and administrative changes that have also been carried out, such as students’ support and assessment systems, the designing and conducting of hybrid and blended studies, etc. All services were redesigned and made more available, individual, and flexible. Hence, the feedback system was changed, the information was collected in parallel with educational activities. Experiences of nursing education during the pandemic time are widely presented in scientific literature. However, to conclude our study, authors have found evidence that solutions implemented in Estonian nursing education allowed the students to graduate within the nominal study period without any decline in education quality. Operative information system and flexibility provided the minimum distance between the students, support, and academic staff, and likewise, the changes were implemented quickly and efficiently. Institution memberships were updated with the appropriate information, and it positively affected their satisfaction, motivation, and commitment. We recommend that the feedback process and the system should be permanently changed in the future to place all members in the same information area, redefine the hospital internship process, implement hybrid learning, as well as to improve the communication system between stakeholders inside and outside the organization. The main limitation of this study relates to the size of Estonia. Nursing education is provided by two institutions only, and similarly, the number of students is low. The result could be generated to the institutions with a similar size and administrative system. In the future, the relationship between nurses’ performance and organizational outcomes should be deeply investigated and influences of the pandemic time education analyzed at workplaces.

Keywords: hybrid learning, nursing education, nursing, COVID-19

Procedia PDF Downloads 120
18166 A Series Solution of Fuzzy Integro-Differential Equation

Authors: Maryam Mosleh, Mahmood Otadi

Abstract:

The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.

Keywords: Fuzzy number, parametric form of a fuzzy number, fuzzy integrodifferential equation, homotopy analysis method

Procedia PDF Downloads 557
18165 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning

Procedia PDF Downloads 417
18164 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 193
18163 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 297
18162 Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding

Authors: B. S. So, Y. H. Yoon, J. O. Jung, K. S. Bae

Abstract:

Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test.

Keywords: hybrid metal injection molding, swing valve, turbocharger, double injection

Procedia PDF Downloads 213
18161 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 8
18160 Weak Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space

Authors: Alemayehu Geremew Geremew

Abstract:

We prove the weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multivalued f nonexpansive mapping T in Banach space E.

Keywords: common fixed point, Mann iteration, multivalued mapping, weak convergence

Procedia PDF Downloads 335
18159 Experimental Study of Semitransparent and Opaque Photovoltaic Modules with and without Air Duct

Authors: Sanjay Agrawal, Trapti Varshney, G. N. Tiwari

Abstract:

In this paper, thermal modeling has been developed for photovoltaic PV modules, namely; Case A: semitransparent PV module without duct, Case B: semitransparent PV module with duct, Case C: opaque PV module without duct, Case D: opaque PV module with duct for Delhi, India climatic condition. MATLAB 7.0 software has been used to solve mathematical models of the proposed system. For validation of proposed system, the experimental study has also been carried out for all above four cases, and then comparative analysis of all different type of PV module has been presented. The hybrid PVT module air collectors presented in this study are self sustaining the system and can be used for the electricity generation in remote areas where access of electricity is not economical due to high transmission and distribution losses. It has been found that overall annual thermal energy and exergy gain of semitransparent PV module is higher by 11.6% and7.32% in summer condition and 16.39% and 18% in winter condition respectively as compared to opaque PV module considering same area (0.61 m2) of PV module.

Keywords: semitransparent PV module, overall exergy, overall thermal energy, opaque

Procedia PDF Downloads 437
18158 Enhancement of coupler-based delay line filters modulation techniques using optical wireless channel and amplifiers at 100 Gbit/s

Authors: Divya Sisodiya, Deepika Sipal

Abstract:

Optical wireless communication (OWC) is a relatively new technology in optical communication systems that allows for high-speed wireless optical communication. This research focuses on developing a cost-effective OWC system using a hybrid configuration of optical amplifiers. In addition to using EDFA amplifiers, a comparison study was conducted to determine which modulation technique is more effective for communication. This research examines the performance of an OWC system based on ASK and PSK modulation techniques by varying OWC parameters under various atmospheric conditions such as rain, mist, haze, and snow. Finally, the simulation results are discussed and analyzed.

Keywords: OWC, bit error rate, amplitude shift keying, phase shift keying, attenuation, amplifiers

Procedia PDF Downloads 132
18157 Investigation of the Dielectric Response of Ppy/V₂c Mxene-Zns from First Principle Calculation

Authors: Anthony Chidi Ezika, Gbolahan Joseph Adekoya, Emmanuel Rotimi Sadiku, Yskandar Hamam, Suprakas Sinha Ray

Abstract:

High-energy-density polymer/ceramic composites require a high breakdown strength and dielectric constant. Interface polarization and electric percolation are responsible for the high dielectric constant. In order to create composite dielectrics, high conductivity ceramic particles are combined with polymers to increase the dielectric constant. In this study, bonding and the non-uniform distribution of charges in the ceramic/ceramic interface zone are investigated using density functional theory (DFT) modeling. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface's dipole polarization (dielectric response). The interfacial chemical bond formation can also improve the structural stability of the hybrid filler and, consequently, of the composite films. To comprehend the electron-transfer process, the density of state and electron localization function of the PPy with hybrid fillers are also studied. The polymer nanocomposite is anticipated to provide a suitable dielectric response for energy storage applications.

Keywords: energy storage, V₂C/ ZnS hybrid, polypyrrole, MXene, nanocomposite, dielectric

Procedia PDF Downloads 117
18156 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 264
18155 Hybrid Project Management Model Based on Lean and Agile Approach

Authors: Fatima-Zahra Eddoug, Jamal Benhra, Rajaa Benabbou

Abstract:

Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project.

Keywords: agility, hybrid project management, lean, scrum

Procedia PDF Downloads 138
18154 Secure Automatic Key SMS Encryption Scheme Using Hybrid Cryptosystem: An Approach for One Time Password Security Enhancement

Authors: Pratama R. Yunia, Firmansyah, I., Ariani, Ulfa R. Maharani, Fikri M. Al

Abstract:

Nowadays, notwithstanding that the role of SMS as a means of communication has been largely replaced by online applications such as WhatsApp, Telegram, and others, the fact that SMS is still used for certain and important communication needs is indisputable. Among them is for sending one time password (OTP) as an authentication media for various online applications ranging from chatting, shopping to online banking applications. However, the usage of SMS does not pretty much guarantee the security of transmitted messages. As a matter of fact, the transmitted messages between BTS is still in the form of plaintext, making it extremely vulnerable to eavesdropping, especially if the message is confidential, for instance, the OTP. One solution to overcome this problem is to use an SMS application which provides security services for each transmitted message. Responding to this problem, in this study, an automatic key SMS encryption scheme was designed as a means to secure SMS communication. The proposed scheme allows SMS sending, which is automatically encrypted with keys that are constantly changing (automatic key update), automatic key exchange, and automatic key generation. In terms of the security method, the proposed scheme applies cryptographic techniques with a hybrid cryptosystem mechanism. Proofing the proposed scheme, a client to client SMS encryption application was developed using Java platform with AES-256 as encryption algorithm, RSA-768 as public and private key generator and SHA-256 for message hashing function. The result of this study is a secure automatic key SMS encryption scheme using hybrid cryptosystem which can guarantee the security of every transmitted message, so as to become a reliable solution in sending confidential messages through SMS although it still has weaknesses in terms of processing time.

Keywords: encryption scheme, hybrid cryptosystem, one time password, SMS security

Procedia PDF Downloads 128
18153 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid

Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine

Abstract:

New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.

Keywords: control strategy, drive cycle, hybrid vehicle, simulation

Procedia PDF Downloads 380
18152 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 64
18151 Design and Synthesis of Gradient Nanocomposite Materials

Authors: Pu Ying-Chih, Yang Yin-Ju, Hang Jian-Yi, Jang Guang-Way

Abstract:

Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented.

Keywords: Gradient, Hybrid, Nanocomposite, Organic-Inorganic

Procedia PDF Downloads 506
18150 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 114
18149 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 13
18148 Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells

Authors: Thierry Pauporté

Abstract:

Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech.

Keywords: oxide, hybrid perovskite, solar cells, impedance

Procedia PDF Downloads 315
18147 Generating a Multiplex Sensing Platform for the Accurate Diagnosis of Sepsis

Authors: N. Demertzis, J. L. Bowen

Abstract:

Sepsis is a complex and rapidly evolving condition, resulting from uncontrolled prolonged activation of host immune system due to pathogenic insult. The aim of this study is the development of a multiplex electrochemical sensing platform, capable of detecting both pathogen associated and host immune markers to enable the rapid and definitive diagnosis of sepsis. A combination of aptamers and molecular imprinting approaches have been employed to generate sensing systems for lipopolysaccharide (LPS), c-reactive protein (CRP) and procalcitonin (PCT). Gold working electrodes were mechanically polished and electrochemically cleaned with 0.1 M sulphuric acid using cyclic voltammetry (CV). Following activation, a self-assembled monolayer (SAM) was generated, by incubating the electrodes with a thiolated anti-LPS aptamer / dithiodibutiric acid (DTBA) mixture (1:20). 3-aminophenylboronic acid (3-APBA) in combination with the anti-LPS aptamer was used for the development of the hybrid molecularly imprinted sensor (apta-MIP). Aptasensors, targeting PCT and CRP were also fabricated, following the same approach as in the case of LPS, with mercaptohexanol (MCH) replacing DTBA. In the case of the CRP aptasensor, the SAM was formed following incubation of a 1:1 aptamer: MCH mixture. However, in the case of PCT, the SAM was formed with the aptamer itself, with subsequent backfilling with 1 μM MCH. The binding performance of all systems has been evaluated using electrochemical impedance spectroscopy. The apta-MIP’s polymer thickness is controlled by varying the number of electropolymerisation cycles. In the ideal number of polymerisation cycles, the polymer must cover the electrode surface and create a binding pocket around LPS and its aptamer binding site. Less polymerisation cycles will create a hybrid system which resembles an aptasensor, while more cycles will be able to cover the complex and demonstrate a bulk polymer-like behaviour. Both aptasensor and apta-MIP were challenged with LPS and compared to conventional imprinted (absence of aptamer from the binding site, polymer formed in presence of LPS) and non-imprinted polymers (NIPS, absence of LPS whilst hybrid polymer is formed). A stable LPS aptasensor, capable of detecting down to 5 pg/ml of LPS was generated. The apparent Kd of the system was estimated at 17 pM, with a Bmax of approximately 50 pM. The aptasensor demonstrated high specificity to LPS. The apta-MIP demonstrated superior recognition properties with a limit of detection of 1 fg/ml and a Bmax of 100 pg/ml. The CRP and PCT aptasensors were both able to detect down to 5 pg/ml. Whilst full binding performance is currently being evaluated, there is none of the sensors demonstrate cross-reactivity towards LPS, CRP or PCT. In conclusion, stable aptasensors capable of detecting LPS, PCT and CRP at low concentrations have been generated. The realisation of a multiplex panel such as described herein, will effectively contribute to the rapid, personalised diagnosis of sepsis.

Keywords: aptamer, electrochemical impedance spectroscopy, molecularly imprinted polymers, sepsis

Procedia PDF Downloads 125