Search results for: discrete event simulation (DES)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6506

Search results for: discrete event simulation (DES)

5966 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 306
5965 Hydrodynamic Study and Sizing of a Distillation Column by HYSYS Software

Authors: Derrouazin Mohammed Redhouane, Souakri Mohammed Lotfi, Henini Ghania

Abstract:

This work consists, first of all, of mastering one of the powerful process simulation tools currently used in the industrial processes, which is the HYSYS sizing software, and second, of simulating a petroleum distillation column. This study is divided into two parts; where the first one consists of a dimensioning of the column with a fast approximating method using state equations, iterative calculations, and then a precise simulation method with the HYSYS software. The second part of this study is a hydrodynamic study in order to verify by obtained results the proper functioning of the plates.

Keywords: industry process engineering, water distillation, environment, HYSYS simulation tool

Procedia PDF Downloads 114
5964 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts

Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug

Abstract:

Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.

Keywords: simulation, lean, stabilization, welding process

Procedia PDF Downloads 311
5963 Axle Load Estimation of Moving Vehicles Using BWIM Technique

Authors: Changgil Lee, Seunghee Park

Abstract:

Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.

Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation

Procedia PDF Downloads 278
5962 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli

Abstract:

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible gross vehicle weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Keywords: heavy vehicle, road safety, vehicle stability, lateral acceleration, gross vehicle weight

Procedia PDF Downloads 519
5961 Simulation and Experimental Verification of Mechanical Response of Additively Manufactured Lattice Structures

Authors: P. Karlsson, M. Åsberg, R. Eriksson, P. Krakhmalev, N. Strömberg

Abstract:

Additive manufacturing of lattice structures is promising for lightweight design, but the mechanical response of the lattices structures is not fully understood. This investigation presents the results of simulation and experimental investigations of the grid and shell-based gyroid lattices. Specimens containing selected lattices were designed with an in-house software and manufactured from 316L steel with Renishaw AM400 equipment. Results of simulation and experimental investigations correlated well.

Keywords: additive manufacturing, computed tomography, material characterization, lattice structures, robust lightweight design

Procedia PDF Downloads 154
5960 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot

Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux

Abstract:

One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.

Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo

Procedia PDF Downloads 195
5959 Divergent Preferences for Rice Variety Attributes among Farmers and Breeders in Nepal

Authors: Bibek Sapkota, Michael Burton, Krishna Prasad Timsina

Abstract:

This paper presents a discrete choice experiment (DCE)-based analysis of farmers' preferences for rice variety attributes involving 540 farmers from the Terai region of Nepal clustered into East, Mid, and Western Terai regions. Findings reveal that farmers prioritize grain yield, finer grain types, drought tolerance, and shorter crop duration when selecting rice varieties, with subtle gender-based differences observed. However, breeding programs have predominantly emphasized grain yield and crop duration, possibly neglecting other vital traits. Furthermore, the research reveals a concerning decline in the yield trends of both released and registered rice varieties. Notably, the limited availability of recommended rainfed varieties, despite strong farmer preferences for drought tolerance, underscores the imperative of bridging this gap to ensure food security. This study provides insights into the multifaceted nature of farmer preferences and calls for a more holistic approach to varietal development that aligns with farmers' needs and the evolving challenges of rice farming in the Terai region of Nepal.

Keywords: breeders’ preferences, discrete choice experiment, farmers’ preferences, rice variety attributes

Procedia PDF Downloads 116
5958 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin

Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam

Abstract:

Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.

Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event

Procedia PDF Downloads 401
5957 Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers

Authors: Intan Izafina Idrus, Mardina Abdullah, Alina Marie Hasbi, Asnawi Husin

Abstract:

This paper presents the result of large-scale traveling ionospheric disturbance (LSTID) observation during moderate magnetic storm event on 25 October 2011 with SYM-H ~ -160 nT and Kp ~ 7 over Peninsular Malaysia at equatorial region using vertical total electron content (VTEC) from the Global Positioning System (GPS) observation measurement. The propagation of the LSTID signatures in the TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTID was found to propagate equator-ward during this event. The results showed that the LSTID propagated with an average phase velocity of 526.41 m/s and average periods of 140 min. The occurrence of this LSTID was also found to be the subsequent effects of substorm activities in the auroral region.

Keywords: Global Positioning System (GPS), large-scale traveling ionospheric disturbance (LSTID), moderate geomagnetic storm, vertical total electron content (VTEC)

Procedia PDF Downloads 213
5956 Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm

Authors: Duckyong Kim, Jong Kang Park, Jong Tae Kim

Abstract:

DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system.

Keywords: DOA estimation, MUSIC algorithm, spatial spectrum, array signal processing

Procedia PDF Downloads 358
5955 Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation

Authors: Jesus Ruano, Francesc Xavier Trias, Asensi Oliva

Abstract:

A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, long-span bodies

Procedia PDF Downloads 357
5954 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves

Authors: Jui-Ching Chou

Abstract:

Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.

Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model

Procedia PDF Downloads 152
5953 Pattern of Deliberate Self-Harm Repetition in Rural Sri Lanka

Authors: P. H. G. J. Pushpakumara, Andrew Dawson

Abstract:

Introduction: Deliberate self harm (DSH) is a major public health problem globally. Suicide rates of Sri Lanka are being among the highest national rates in the world, since 1950. Previous DSH is the most important independent predictor of repetition. The estimated 1 year non-fatal repeat self-harm rate was 16.3%. Asian countries had considerably lower rate, 10.0%. Objectives: To calculate incidence of deliberate self-poisoning (DSP) and suicides, repetition rate of DSP in Kurunegala District (KD). To determine the pattern of repeated DSP in KD. Methods: Study had two components. In the first component, demographic and event related details of, DSP admission in 46 hospitals and suicides in 28 police stations of KD were collected for 3 years from January 2011. Demographic details of cohort of DSP patients admitted to above hospitals in 2011 were linked with hospital admissions and police records of next two years period from the index admission. Records were screened for links with high sensitivity using the computer then did manual matching which would have been much more specific. In the second component, randomly selected DSP patients (n=438), who admitted to main referral centre which receives 60% of DSP cases of the district, were interviewed to assess life-time repetition. Results: There were 16,993 DSP admissions and 1078 suicides for the three year period. Suicide incidences in KD were, 21.6, 20.7 and 24.3 per 100,000 population in 2011, 2012 and 2013. Average male to female ratio for suicide incidences was 5.5. DSP incidences were 205.4, 248.3 and 202.5 per 100,000 population. Male incidences were slightly greater than the female incidences, male: female ratio was 1.1:1. Highest age standardized male and female incidence was reported in 20-24 years age group, 769.6/100,000, and 15-19 years age group 1304.0/100,000. Male to female ratio of the incidence increased with the age. There were 318 (179 male and 139 female) patients attempted DSH within two years. Female repetitive patients were ounger compared to the males, p < 0.0001, median age: males 28 and females 19 years. 290 (91.2%) had only one repetitive attempt, 24 (7.5%) had two, 3 (0.9%) had three and one (0.3%) had four in that period. One year repetition rate was 5.6 and two year repetition rate was 7.9%. Average intervals between indexed events and first repetitive DSP events were 246.8 (SD:223.4) and 238.5 (SD:207.0) days among males and females. One fifth of first repetitive events occurred within first two weeks in both males and females. Around 50% of males and females had the second event within 28 weeks. Within the first year of the indexed event, around 70% had the second event. First repetitive event was fatal for 28 (8.8%) individuals. Ages of those who died, mean 49.7 years (SD:15.3), were significantly higher compared to those who had non-fatal outcome, p<0.0001. 9.5% had life time history of DSH attempts. Conclusions: Both, DSP and suicide incidences were very high in KD. However, repetition rates were lesser compared regional values. Prevention of repetition alone may not produce significant impact on prevention of DSH.

Keywords: deliberate self-harm, incidence, repetition, Sri Lanka, suicide

Procedia PDF Downloads 207
5952 Assessment of Chemical and Physical Properties of Surface Water Resources in Flood Affected Area

Authors: Siti Hajar Ya’acob, Nor Sayzwani Sukri, Farah Khaliz Kedri, Rozidaini Mohd Ghazi, Nik Raihan Nik Yusoff, Aweng A/L Eh Rak

Abstract:

Flood event that occurred in mid-December 2014 in East Coast of Peninsular Malaysia has driven attention from the public nationwide. Apart from loss and damage of properties and belongings, the massive flood event has introduced environmental disturbances on surface water resources in such flood affected area. A study has been conducted to measure the physical and chemical composition of Galas River and Pergau River prior to identification the flood impact towards environmental deterioration in surrounding area. Samples that have been collected were analyzed in-situ using YSI portable instrument and also in the laboratory for acid digestion and heavy metals analysis using Atomic Absorption Spectroscopy (AAS). Results showed that range of temperature (0C), DO (mg/L), Ec (µs/cm), TDS (mg/L), turbidity (NTU), pH, and salinity were 25.05-26.65, 1.51-5.85, 0.032-0.054, 0.022-0.035, 23.2-76.4, 3.46-7.31, and 0.01-0.02 respectively. The results from this study could be used as a primary database to evaluate the status of water quality of the respective river after the massive flood.

Keywords: flood, river, heavy metals, AAS

Procedia PDF Downloads 367
5951 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (CI) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work, the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: evaporating diesel sprays, penetration rates, hot bomb conditions

Procedia PDF Downloads 349
5950 Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate

Authors: Byung hyun Bae

Abstract:

In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper.

Keywords: power transformer, steel plate, temperature rise, experiment, simulation

Procedia PDF Downloads 482
5949 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 87
5948 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size

Procedia PDF Downloads 401
5947 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells

Authors: Yanqin Chen, Chao Jiang, Chongdu Cho

Abstract:

This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.

Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model

Procedia PDF Downloads 147
5946 Modeling User Departure Time Choice for Work Trips in High Traffic Suburban Roads

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Modeling users’ decisions on departure time choice is the main motivation for this research. In particular, it examines the impact of social-demographic features, household, job characteristics and trip qualities on individuals’ departure time choice. Departure time alternatives are presented as adjacent discrete time periods. The choice between these alternatives is done using a discrete choice model. Since a great deal of early morning trips and traffic congestion at that time of the day comprise work trips, the focus of this study is on the work trip over the entire day. Therefore, this study by using the users’ stated preference in questionnaire models users’ departure time choice affected by congestion pricing schemes in high traffic suburban entrance roads of Tehran. The results demonstrate efficient social-demographic impact on work trips’ departure time. These findings have substantial outcomes for the analysis of transportation planning. Particularly, the analysis shows that ignoring the effects of these variables could result in erroneous information and consequently decisions in the field of transportation planning and air quality would fail and cause financial resources loss.

Keywords: congestion pricing, departure time, modeling, travel timing, time of the day, transportation planning

Procedia PDF Downloads 288
5945 Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program

Authors: Cherief Houria, Fouka Mourad

Abstract:

In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data.

Keywords: gamma photon, Monte Carlo program, radiation attenuation, shielding material, the linear attenuation coefficient

Procedia PDF Downloads 190
5944 Casusation and Criminal Responsibility

Authors: László Schmidt

Abstract:

“Post hoc ergo propter hoc” means after it, therefore because of it. In other words: If event Y followed event X, then event Y must have been caused by event X. The question of causation has long been a central theme in philosophical thought, and many different theories have been put forward. However, causality is an essentially contested concept (ECC), as it has no universally accepted definition and is used differently in everyday, scientific, and legal thinking. In the field of law, the question of causality arises mainly in the context of establishing legal liability: in criminal law and in the rules of civil law on liability for damages arising either from breach of contract or from tort. In the study some philosophical theories of causality will be presented and how these theories correlate with legal causality. It’s quite interesting when philosophical abstractions meet the pragmatic demands of jurisprudence. In Hungarian criminal judicial practice the principle of equivalence of conditions is the generally accepted and applicable standard of causation, where all necessary conditions are considered equivalent and thus a cause. The idea is that without the trigger, the subsequent outcome would not have occurred; all the conditions that led to the subsequent outcome are equivalent. In the case where the trigger that led to the result is accompanied by an additional intervening cause, including an accidental one, independent of the perpetrator, the causal link is not broken, but at most the causal link becomes looser. The importance of the intervening causes in the outcome should be given due weight in the imposition of the sentence. According to court practice if the conduct of the offender sets in motion the causal process which led to the result, it does not exclude his criminal liability and does not interrupt the causal process if other factors, such as the victim's illness, may have contributed to it. The concausa does not break the chain of causation, i.e. the existence of a causal link establish the criminal liability of the offender. Courts also adjudicates that if an act is a cause of the result if the act cannot be omitted without the result being omitted. This essentially assumes a hypothetical elimination procedure, i.e. the act must be omitted in thought and then examined to see whether the result would still occur or whether it would be omitted. On the substantive side, the essential condition for establishing the offence is that the result must be demonstrably connected with the activity committed. The provision on the assessment of the facts beyond reasonable doubt must also apply to the causal link: that is to say, the uncertainty of the causal link between the conduct and the result of the offence precludes the perpetrator from being held liable for the result. Sometimes, however, the courts do not specify in the reasons for their judgments what standard of causation they apply, i.e. on what basis they establish the existence of (legal) causation.

Keywords: causation, Hungarian criminal law, responsibility, philosophy of law

Procedia PDF Downloads 21
5943 People Who Live in Poverty Usually Do So Due to Circumstances Far Beyond Their Control: A Multiple Case Study on Poverty Simulation Events

Authors: Tracy Smith-Carrier

Abstract:

Burgeoning research extols the benefits of innovative experiential learning activities to increase participants’ engagement, enhance their individual learning, and bridge the gap between theory and practice. This presentation discusses findings from a multiple case study on poverty simulation events conducted with two samples: undergraduate students and community participants. After exploring the nascent research on the benefits and limitations of poverty simulation activities, the study explores whether participating in a poverty simulation resulted in changes to participants’ beliefs about the causes and effects of poverty, as well as shifts in their attitudes and actions toward people experiencing poverty. For the purposes of triangulation, quantitative and qualitative data from a variety of sources were analyzed: participant feedback surveys, qualitative responses, and pre, post, and follow-up questionnaires. Findings show statistically significant results (p<.05) from both samples on cumulative scores of the modified Attitudes Toward Poverty Scale, indicating an improvement in participants’ attitudes toward poverty. Although generally positive about their experiences, participating in the simulation did not appear to have prompted participants to take specific actions to reduce poverty. Conclusions drawn from the research study suggest that poverty simulation planners should be wary of adopting scenarios that emphasize, or fail to adequately contextualize, behaviours or responses that might perpetuate individual explanations of poverty. Moreover, organizers must carefully consider how to ensure participants in their audience currently experiencing low-income do not become emotionally distressed, triggered or further marginalized in the process. While overall participants were positive about their experiences in the simulation, the events did not appear to have prompted them to action. Moving beyond the goal of increasing participants’ understandings of poverty, interventions that foster greater engagement in poverty issues over the long-term are necessary.

Keywords: empathy, experiential learning, poverty awareness, poverty simulation

Procedia PDF Downloads 254
5942 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces

Procedia PDF Downloads 369
5941 Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression

Authors: Chafik Barnoussi, Mourad Talbi, Adnane Cherif

Abstract:

In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality.

Keywords: speech compression, bionic wavelet transform, filterbanks, psychoacoustic model

Procedia PDF Downloads 371
5940 Spatial-Temporal Awareness Approach for Extensive Re-Identification

Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush

Abstract:

Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.

Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness

Procedia PDF Downloads 103
5939 A Simulation Model to Analyze the Impact of Virtual Responsiveness in an E-Commerce Supply Chain

Authors: T. Godwin

Abstract:

The design of a supply chain always entails the trade-off between responsiveness and efficiency. The launch of e-commerce has not only changed the way of shopping but also altered the supply chain design while trading off efficiency with responsiveness. A concept called ‘virtual responsiveness’ is introduced in the context of e-commerce supply chain. A simulation model is developed to compare actual responsiveness and virtual responsiveness to the customer in an e-commerce supply chain. The simulation is restricted to the movement of goods from the e-tailer to the customer. Customer demand follows a statistical distribution and is generated using inverse transformation technique. The two responsiveness schemes of the supply chain are compared in terms of the minimum number of inventory required at the e-tailer to fulfill the orders. Computational results show the savings achieved through virtual responsiveness. The insights gained from this study could be used to redesign e-commerce supply chain by incorporating virtual responsiveness. A part of the achieved cost savings could be passed back to the customer, thereby making the supply chain both effective and competitive.

Keywords: e-commerce, simulation modeling, supply chain, virtual responsiveness

Procedia PDF Downloads 334
5938 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 94
5937 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel

Procedia PDF Downloads 356