Search results for: deterministic process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15422

Search results for: deterministic process

14882 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
14881 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 194
14880 Reliability-Based Method for Assessing Liquefaction Potential of Soils

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.

Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering

Procedia PDF Downloads 470
14879 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates

Authors: K. Subbaiah

Abstract:

Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.

Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties

Procedia PDF Downloads 466
14878 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 384
14877 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 389
14876 Automation of Kitchen Chemical in the Textile Industry

Authors: José Luiz da Silva Neto, Renato Sipelli Silva, Érick Aragão Ribeiro

Abstract:

The automation of industrial processes plays a vital role in industries today, becoming an integral and important part of the industrial process and modern production. The process control systems are designed to maximize production, reduce costs and minimize risks in production. However, these systems are generally not deployed methodologies and planning. So that this article describes the development of an automation system of a kitchen preparation of chemicals in the textile industry based on a retrofitting methodology that provides more quality into the process at a lower cost.

Keywords: automation, textile industry, kitchen chemical, information integration

Procedia PDF Downloads 427
14875 Development of the Independent Building Permit System to Improve Productivity and Quality Service

Authors: Hartomo Soewardi, Bachtiar Jouhari

Abstract:

Ineffectiveness and inefficiency of the building permit process in Indonesia still becomes a major problems for people to apply. Long time of service, the complicated administration process, and an expensive fees are a process that causing a dissatisfaction and discomfort for applicant. Therefore, it is critical to improve the quality of service of building permit system. Objectives of this research is to develop a better process of the system to improve productivity and quality service. Lean six sigma concept by using DMAIC procedures was used to analyze the existing system. Moreover, improvement of the system was conducted by using the Axiomatic Design method. Verification test was done to test the hypothesis of the proposed system design. Result of this research shows that proposed system can produce increasing 61.8% of efficiency on service time, and more effective and easier.

Keywords: axiomatic design, bbuilding permit system, DMAIC, Lean Six Sigma

Procedia PDF Downloads 329
14874 Effect of Electromagnetic Field on Capacitive Deionization Performance

Authors: Alibi Kilybay, Emad Alhseinat, Ibrahim Mustafa, Abdulfahim Arangadi, Pei Shui, Faisal Almarzooqi

Abstract:

In this work, the electromagnetic field has been used for improving the performance of the capacitive deionization process. The effect of electromagnetic fields on the efficiency of the capacitive deionization (CDI) process was investigated experimentally. The results showed that treating the feed stream of the CDI process using an electromagnetic field can enhance the electrosorption capacity from 20% up to 70%. The effect of the degree of time of exposure, concentration, and type of ions have been examined. The electromagnetic field enhanced the salt adsorption capacity (SAC) of the Ca²⁺ ions by 70%, while the SAC enhanced 20% to the Na⁺ ions. It is hypnotized that the electrometric field affects the hydration shell around the ions and thus reduces their effective size and enhances the mass transfer. This reduction in ion effective size and increase in mass transfer enhanced the electrosorption capacity and kinetics of the CDI process.

Keywords: capacitive deionization, desalination, electromagnetic treatment, water treatment

Procedia PDF Downloads 265
14873 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters

Authors: B. SahaRoy, T. Medhi, S. C. Saha

Abstract:

To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.

Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow

Procedia PDF Downloads 521
14872 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 41
14871 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components

Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich

Abstract:

This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.

Keywords: hard disk drive, line balancing, ECRS, simulation, arena program

Procedia PDF Downloads 226
14870 Developing Interactive Media for Piston Engine Lectures to Improve Cadets Learning Outcomes: Literature Study

Authors: Jamaludin Jamaludin, Suparji Suparji, Lilik Anifah, I. Gusti Putu Asto Buditjahjanto, Eppy Yundra

Abstract:

Learning media is an important and main component in the learning process. By using currently available media, cadets still have difficulty understanding how the piston engine works, so they are not able to apply these concepts appropriately. This study aims to examine the development of interactive media for piston engine courses in order to improve student learning outcomes. The research method used is a literature study of several articles, journals and proceedings of interactive media development results from 2010-2020. The results showed that the development of interactive media is needed to support the learning process and influence the cognitive abilities of students. With this interactive media, learning outcomes can be improved and the learning process can be effective.

Keywords: interactive media, learning outcomes, learning process, literature study

Procedia PDF Downloads 152
14869 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: absorption, distillation, heat pump, Unisim design

Procedia PDF Downloads 338
14868 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 181
14867 ERP Implementation in Iran: A Successful Experience in DGC

Authors: Mohammad Reza Ostad Ali Naghi Kashani

Abstract:

Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing. Although ERP projects are expensive, time consuming, and complex, there are some successful experiences. These days, developing countries are striving to implement ERP projects successfully; however, there are many obstacles. Therefore, these projects would be failed or partially failed. This paper concerns the implementation of a successful ERP implementation, IFS, in Iran at Dana Geophysics Company (DGC). After a short review of ERP and ERP market in Iran, we propose a three phases deployment methodology (phase 1: Preparation and Business Process Management (BPM) phase 2: implementation and phase 3: testing, golive-1 (pilot) and golive-2 (final)). Then, we present five guidelines (Project Management, Change Management, Business Process Management (BPM), Training& Knowledge Management, and Technical Management), which were chose as work streams. In this case study we present lessons learned in Project management and Business process Management.

Keywords: business process management, critical success factors, ERP, project management

Procedia PDF Downloads 491
14866 Elderly Health Care Process by Community Participation: A Sub-District in the Lower Northern Region of Thailand

Authors: Amaraporn Puraya, Roongtiva Boonpracom, Somsak Thojampa, Sirikanok Klankhajhon, Kittisak Kumpeera

Abstract:

The objective of this qualitative research was to study the elderly health care process by community participation. Data were collected by quality research methods, including secondary data study, observation, in-depth interviews, and focus group discussions and analyzed by content analysis, reflection and review of information. The research results pointed out that the important elderly health care process by community participation consisted of 2 parts, namely the community participation development process in elderly health care and the outcomes from the participation development process. The community participation development process consisted of 4 steps as follows: 1) Building the leadership team, an important social capital of the community, which started from searching for both formal and informal leaders by giving the opportunity for public participation and creating clear agreements defining roles, duties and responsibilities; 2) investigating the problems and the needs of the community, 3) designing the elderly health care activities under the concept of self-care potential development of the elderly through participation in community forums and meetings to exchange knowledge with common goals, plans and operation and 4) the development process of sustainable health care agreement at the local level, starting from opening communication channels to create awareness and participation in various activities at both individual and group levels as well as pushing activities/projects into the community development plan consistent with the local administration policy. The outcomes from the participation development process were as follows. 1) There was the integration of the elderly for doing the elderly health care activities/projects in the community managed by the elderly themselves. 2) The service system was changed from the passive to the proactive one, focusing on health promotion rather than treating diseases or illnesses. 3) The registered nurses / the public health officers can provide care for the elderly with chronic illnesses through the implementation of activities/projects of elderly health care so that the elderly can access the services more. 4) The local government organization became the main mechanism in driving the elderly health care process by community participation.

Keywords: elderly health care process, community participation, elderly, Thailand

Procedia PDF Downloads 213
14865 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
14864 Using Agility in Building Business Process Management Solutions

Authors: Krešimir Fertalj, Mladen Matejaš

Abstract:

In turbulent modern economy, the companies need to properly manage their business processes. Well defined and stable business processes ensure the security of crucial data and application, and provide a quality product or service to the end customer. On the other side constant changes on the market, new regulatory provisions and emerging new technologies require the need of issuing prompt and effective changes of business process. In this article, we explore the use of agile principles in working with business process management (BPM) solutions. We deal with difficulties in BPM development cycle, review the benefits of using agility and choose the basic agile principles that ensure the success of a BPM project.

Keywords: agile development, BPM environment, Kanban, SCRUM, XP

Procedia PDF Downloads 321
14863 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 97
14862 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 434
14861 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 319
14860 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 555
14859 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior

Authors: Juliana A. Knocikova

Abstract:

Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.

Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex

Procedia PDF Downloads 300
14858 The Rehabilitation of Drug Addiction by Thai Indigenous Knowledge: A Case Study of Thamkrabok Monastery

Authors: Wanwimon Mekwimon

Abstract:

Drug addiction is a serious problem in Thailand which has occurred continuously and repeatedly and enormously impacting health and economy of drug users. The indigenous wisdom and folk medicine is an attractive alternative choice, especially in detoxification and rehabilitation period. There are two objectives: First is to study about rehabilitation process and the curing for drug eaters and 2nd is to investigate the effectiveness of the curing and rehabilitation process by indigenous wisdom at Tamkrabok monastery, Pra-Puttabat district, Saraburi province. The main informants are 10 curers, 15 patients and 17 after-1-year rehabilitators. In the process, the semi-structured questionnaire is administered, the data are analyzed and proved by triangulation. The curing and rehabilitation process which use herbal remedies has a period of 15 days (5 days for detoxification and 10 days for recovery period) and the occupational training and self-consciousness awakening were delivered. The follow-up process includes twice-a-month recall for 6 months, follow-up letters and in depth interview with their families. The outcome of 1 year post-treatment was 94% (16 from 17). There are many reasons for not relapsing: the recovering patients have drawn on their inner strength, self-awareness and coping skill as well as their family and social support while rehabilitation process which includes difficulties in contacting with family members. They can void themselves from high risk situations to relapse. Recommendations: The follow-up system should be improved for continuous quality improvement, there should be the qualification standard for herbal remedies and the comparison among rehabilitation process of Tamkrabok and another methods are to be guideline for the further development.

Keywords: rehabilitation, drug addiction, Thai indigenous knowledge, herbal remedies

Procedia PDF Downloads 244
14857 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 132
14856 Developing Innovations in Classrom Teaching: Process or Product

Authors: Mani Ram Sharma

Abstract:

We live in a busy world with sudden distractions and many things to think about. The rapid speed of science and technology keeps our world in constant motion. Students leaving the classroom after being taught by the teachers are thinking about a thousand things: "Did I understand what teacher taught?" However, when they come into the classroom, as teachers, we expect them to be ready to learn, ready to receive information, and retain it. There is a question that how can learners do this with so much in their learning process. It is obliviously with the use of innovation in the classroom. It fosters the students to learn innovatively to establish learner's autonomy. This article outlines the role, need, and process of innovation in the language classroom and teaching.

Keywords: distraction, foster, innovation, learner's autonomy, retainment

Procedia PDF Downloads 269
14855 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement

Procedia PDF Downloads 168
14854 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields

Authors: John Knight, Fuchun Li, Yan Xu

Abstract:

Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.

Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function

Procedia PDF Downloads 369
14853 Study on the Changes in Material Strength According to Changes in Forming Methods in Hot-Stamping Process

Authors: Yong-Jun Jeon, Hyung-Pil Park, Min-Jae Song, Baeg-Soon Cha

Abstract:

Following the recent trend of having increased demand in producing lighter-weight car bodies for improvement of automobile safety and gas mileage, there is a forming method that makes use of hot-stamping technique, which satisfies all conditions mentioned above. Hot-stamping is a forming technique with advantages of excellent formability, good dimensional precision and others since it is a process in which steel plates are heated up to temperatures of at least approximately 900°C after which forming is conducted in die at room temperature followed by rapid cooling. In addition, it has characteristics of allowing for improvement in material strength through achievement of quenching effect by having simultaneous forming and rapid cooling of material of high temperatures. However, there is insufficient information on the changes in material strength according to changes in material temperature with regards to material heating method and forming process in hot-stamping. Accordingly, this study aims to design and press die for T-type product of the scale models of the center pillar and to understand the changes in material strength in relation to changes in forming methods of hot-stamping process. Thus in order to understand the changes in material strength due to quenching effect among the hot-stamping process, material strength and material forming precision were to be studied while varying the forming and forming method when forming. For test methods, material strength was observed by using boron steel that has boron additives, which was heated up to 950°C, after which it was transferred to a die and was cooled down to material temperature of 400°C followed by air cooling process. During the forming and cooling process here, experiment was conducted with forming parameters of 2 holding rates and 3 flange heating rates wherein changing appearance in material strength according to changes forming method were observed by verifying forming strength and forming precision for each of the conditions.

Keywords: hot-stamping, formability, quenching, forming, press die, forming methods

Procedia PDF Downloads 462