Search results for: community detection
7290 Community Development and Empowerment
Authors: Shahin Marjan Nanaje
Abstract:
The present century is the time that social worker faced complicated issues in the area of their work. All the focus are on bringing change in the life of those that they live in margin or live in poverty became the cause that we have forgotten to look at ourselves and start to bring change in the way we address issues. It seems that there is new area of needs that social worker should response to that. In need of dialogue and collaboration, to address the issues and needs of community both individually and as a group we need to have new method of dialogue as tools to reach to collaboration. The social worker as link between community, organization and government play multiple roles. They need to focus in the area of communication with new ability, to transfer all the narration of the community to those organization and government and vice versa. It is not relate only in language but it is about changing dialogue. Migration for survival by job seeker to the big cities created its own issues and difficulty and therefore created new need. Collaboration is not only requiring between government sector and non-government sectors but also it could be in new way between government, non-government and communities. To reach to this collaboration we need healthy, productive and meaningful dialogue. In this new collaboration there will not be any hierarchy between members. The methodology that selected by researcher were focusing on observation at the first place, and used questionnaire in the second place. Duration of the research was three months and included home visits, group discussion and using communal narrations which helped to bring enough evidence to understand real need of community. The sample selected randomly was included 70 immigrant families which work as sweepers in the slum community in Bangalore, Karnataka. The result reveals that there is a gap between what a community is and what organizations, government and members of society apart from this community think about them. Consequently, it is learnt that to supply any service or bring any change to slum community, we need to apply new skill to have dialogue and understand each other before providing any services. Also to bring change in the life of those marginal groups at large we need to have collaboration as their challenges are collective and need to address by different group and collaboration will be necessary. The outcome of research helped researcher to see the area of need for new method of dialogue and collaboration as well as a framework for collaboration and dialogue that were main focus of the paper. The researcher used observation experience out of ten NGO’s and their activities to create framework for dialogue and collaboration.Keywords: collaboration, dialogue, community development, empowerment
Procedia PDF Downloads 5887289 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 2327288 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5037287 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 5127286 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 267285 Innovation and Creativity: Inspiring the Next Generation in the Ethekwini Municipality
Authors: Anneline Chetty
Abstract:
Innovation is not always born in a sterile lab or is not always about applications and technology. Innovative solutions to community challenges can be borne out of the creativity of community members. This was proven by Professor Anil Gupta who for more than two decades scoured rural India for its hidden innovations motivated by the belief that the most powerful ideas for fighting poverty and hardship will not come from corporate research labs, but from ordinary people struggling to survive. The Ethekwini Municipality is a city in South Africa which adopted a similar approach, recognising the innovativeness of youth (students and school pupils) in its area. The intention was to make the youth a part of the solution to challenges faced by the Municipality. In this regard, five areas were selected and five groups of students were identified. Each group was sent into the community to identify challenges and engage with community leaders as well as members. Each group was tasked to come with solutions to these challenges which were to be presented at an Innovation Summit. The presented solutions were judged and the winning solution would be implemented by the Municipality. This paper, documents the experience of the students as well as the kinds of solutions that were presented. The purpose is to highlight the importance of using the ingenious minds and creativity of youth and channel their energy into becoming part of society’s solutions as opposed to being the problemKeywords: innovation, indigenous, entrepreneurship, community
Procedia PDF Downloads 4027284 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4387283 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 1247282 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 47281 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1947280 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter
Procedia PDF Downloads 3927279 Visualizing the Future of New York’s Southern Tier: Engaging Students to Help Create Sustainable Communities
Authors: William C. Dean
Abstract:
In the pedagogical sequence of the four- and five-year architectural programs at Alfred State, the fourth-year Urban Design Studio constitutes the first course where students directly explore design issues in the urban context. It is the first large-scale, community-based service learning project for most of the participating students. The students learn key lessons that include the benefits of working both individually and in groups of different sizes toward a common goal, accepting - and responding creatively too - criticism from stakeholders at different points in the project, and recognizing the role that local politics and activism can play in planning for community development. Above all, students are exposed to the importance of good planning in relation to preservation and community revitalization. The purpose of this paper is to discuss the use of community-based service-learning projects in undergraduate architectural education to promote student civic engagement as a means of helping communities visualize potential solutions for revitalizing their neighborhoods and business districts. A series of case studies will be presented in terms of challenges that were encountered, opportunities for student engagement and leadership, and the feasibility of sustainable community development resulting from those projects. The reader will be encouraged to consider how they can recognize needs within their own communities that could benefit from the assistance of architecture students and faculty.Keywords: urban design, service-learning, civic engagement, community revitalization
Procedia PDF Downloads 957278 Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand
Authors: Anchana Sooksomchitra
Abstract:
This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews, documentary analysis, focus group interviews, and observation are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana, backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.Keywords: radio broadcasting, programming, management, community radio, Thailand
Procedia PDF Downloads 3437277 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1587276 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 1147275 Assessment of Association Between Microalbuminuria and Lung Function Test Among the Community of Jimma Town
Authors: Diriba Dereje
Abstract:
Background: Cardiac and renal disease are the most prevalent chronic non-communicable diseases (CNCD) affecting the community in a significant manner. The best and recommended method in halting CNCD is by working on prevention as early as possible. This is only possible if early surrogate markers are identified. As part of the stated solution, this study will identify an association between microalbuminuria (an early surrogate marker of renal and cardiac disease) and lung function test among adult in the community. Objective: The main aim of this study was to assess an association between microalbuminuria (an early surrogate marker of renal and cardiac disease) and lung function test among adult in the community. Methodology: Community based cross sectional study was conducted among 384 adult in Jimma town. A systematic sampling technique was used in selecting participants to the study. In searching for the possible association, binary and multivariate logistic regression and t-test was conducted. Finally, the association between microalbuminuria and lung function test was well stated in the form of figures and written description. Result and Conclusion: A significant association was found between microalbuminuria and different lung function test parameters.Keywords: microalbuminuria, lung function, association, test
Procedia PDF Downloads 1917274 The Influence of Housing Choice Vouchers on the Private Rental Market
Authors: Randy D. Colon
Abstract:
Through a freedom of information request, data pertaining to Housing Choice Voucher (HCV) households has been obtained from the Chicago Housing Authority, including rent price and number of bedrooms per HCV household, community area, and zip code from 2013 to the first quarter of 2018. Similar data pertaining to the private rental market will be obtained through public records found through the United States Department of Housing and Urban Development. The datasets will be analyzed through statistical and mapping software to investigate the potential link between HCV households and distorted rent prices. Quantitative data will be supplemented by qualitative data to investigate the lived experience of Chicago residents. Qualitative data will be collected at community meetings in the Chicago Englewood neighborhood through participation in neighborhood meetings and informal interviews with residents and community leaders. The qualitative data will be used to gain insight on the lived experience of community leaders and residents of the Englewood neighborhood in relation to housing, the rental market, and HCV. While there is an abundance of quantitative data on this subject, this qualitative data is necessary to capture the lived experience of local residents effected by a changing rental market. This topic reflects concerns voiced by members of the Englewood community, and this study aims to keep the community relevant in its findings.Keywords: Chicago, housing, housing choice voucher program, housing subsidies, rental market
Procedia PDF Downloads 1187273 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)
Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary
Abstract:
In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.Keywords: photoluminescence, quantum dots, quenching, sensor
Procedia PDF Downloads 2667272 Enhanced Traffic Light Detection Method Using Geometry Information
Authors: Changhwan Choi, Yongwan Park
Abstract:
In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.Keywords: traffic light, intelligent vehicle, night, detection, DGPS
Procedia PDF Downloads 3257271 Quantum Dot Biosensing for Advancing Precision Cancer Detection
Authors: Sourav Sarkar, Manashjit Gogoi
Abstract:
In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.Keywords: quantum dots, biosensing, cancer, device
Procedia PDF Downloads 567270 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 4047269 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3577268 How Digital Empowerment Affects Dissolution of Segmentation Effect and Construction of Opinion Leaders in Isolated Communities: Ethnographic Investigation of Leprosy Rehabilitation Groups
Authors: Lin Zhang
Abstract:
The fear of leprosy has been longstanding throughout the human history. In an era where isolation is practiced as a means of epidemic prevention, the leprosy rehabilitation group has itself become an isolated community with an entrenched metaphor. In the process of new mediatization of the leprosy isolation community, what are the relations among media literacy, the leprosy internalized stigma and social support? To address the question, the “portrait” of leprosy rehabilitation group is re-delineated through two field studies in the “post-leprosy age” in 2012 and 2020, respectively. Taking an isolation community on Si’an Leprosy Island in Dongguan City, Guangdong Province, China as the study object, it is found that new media promotes the dissolution of segregation effect of the leprosy isolation community and the cultivation of opinion leaders by breaking spatial, psychological and social segregation and by building a community of village affairs and public space in the following way: the cured patients with high new media literacy, especially those who use WeChat and other applications and largely rely on new media for information, have a low level of leprosy internalized stigma and a high level of social support, and they are often the opinion leaders inside their community; on the contrary, the cured patients with low new media literacy, a high level of leprosy internalized stigma and a low level of social support are often the followers inside their community. Such effects of dissolution and construction are reflected not only in the vertical differentiation of the same individual at different times, but also in the horizontal differentiation between different individuals at the same time.Keywords: segregation, the leprosy rehabilitation group, new mediatization, digital empowerment, opinion leaders
Procedia PDF Downloads 1777267 Reducing Tobacco Consumption in a Rural Village of Sri Lanka Though a Community Based Health Promotion Intervention
Authors: B. A. N. Madubashini, S. Anojan, S. Thurka, N. M. C. J. Nawasinghe, G. A. S. Milanga, W. M. I. S. Weerakoon, I. D. N. Ihalahewage
Abstract:
Evidence-based health promotional approaches are known to be successful ways of reducing tobacco consumption in a rural village. Hence tobacco prevention is essential in improving lives of people, and community-based approaches are considered as effective. This community-based health promotion intervention implemented to reduce high consumption of tobacco in a rural area in Sri Lanka. This intervention was conducted in a rural village of Sri Lanka. In the beginning, facilitation discussions conducted with community members to identify determinants leading to tobacco consumption among villagers. Intervention was planed based on those determinants. Community actions through small active groups to demote smoking were generated. Children groups displayed cigarette buds collected around common places such as temple to community gatherings including funeral welfare society elaborating the cost and the money spent on cigarettes. A till (expenditure box) was introduced, and smokers in family were encouraged to put money on a cigarette to it when they decide to smoke instead. This way they could monitor potential savings if quit. Children groups introduced a tool 'Engalanthe puthata (for overseas son)' to shops. Shop owners agreed to add a pebble to a box whenever they sell a cigarette. The money spent on cigarettes in that shop was calculated regularly, and that was considered as money sent to tobacco company overseas, so to the son of the company owner. This was useful to encourage quitting and to stop selling cigarette in the shops. All four shops in the community volunteered to stop selling cigarettes. Eleven percent of users quitted smoking and 37% users reduced smoking. Child empowerment was high, and 60% of children had shown their disapproval on smoking publicly at least once. Similar community-based health promotion intervention can be used to generate community actions leading to reduction of tobacco consumption.Keywords: cigarette, community, empowerment, health promotion, intervention
Procedia PDF Downloads 2297266 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 1057265 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 1477264 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor
Authors: Ashwani Kumar
Abstract:
Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity
Procedia PDF Downloads 577263 Environmental Awareness and Community Outreach: A Case Study of Speak Up World Foundation
Authors: Akshita Gaba, Ria P. Dey, Sanya Karotiya, Smrijanee Dash, Soni Gupta
Abstract:
This research paper explores the significance of environmental awareness and community outreach initiatives undertaken by the Speak Up World Foundation; a non-profit organization founded in 2021. The study delves into the historical context of environmental issues, identifies the driving factors contributing to environmental degradation, and outlines tasks undertaken by the foundation to promote environmental consciousness. The paper also highlights the impact of these efforts on the community and emphasizes the need for continued dedication to ensure sustainable coexistence with our environment.Keywords: environment, social service, organization, degradation, survey
Procedia PDF Downloads 657262 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising
Procedia PDF Downloads 1237261 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions
Authors: Nisha Dhariwal, Anupama Sharma
Abstract:
The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization
Procedia PDF Downloads 301