Search results for: MATLAB
362 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer
Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji
Abstract:
The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)
Procedia PDF Downloads 529361 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electro-Hydraulic Servo System
Authors: Maria Ahmadnezhad, Mohammad Reza Soltanpour
Abstract:
Electrohydraulic servo systems have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia PDF Downloads 296360 System for Electromyography Signal Emulation Through the Use of Embedded Systems
Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.
Abstract:
This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.Keywords: classification, electromyography, embedded system, emulation, physiological signals
Procedia PDF Downloads 111359 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali
Abstract:
This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control
Procedia PDF Downloads 147358 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 548357 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.Keywords: electrical generator, induction motor drive, modeling, pitch angle control, real time control, renewable energy, wind turbine, wind turbine emulator
Procedia PDF Downloads 234356 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink
Procedia PDF Downloads 502355 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations
Authors: J. P. Chollom, G. M. Kumleng, S. Longwap
Abstract:
The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.Keywords: block linear multistep methods, high order, implicit, stiff differential equations
Procedia PDF Downloads 358354 Flood Control Structures in the River Göta Älv to Protect Gothenburg City (Sweden) during the 21st Century: Preliminary Evaluation
Authors: M. Irannezhad, E. H. N. Gashti, U. Moback, B. Kløve
Abstract:
Climate change because of increases in concentration level of greenhouse gases emissions to the atmosphere will result in mean sea level rise about +1 m by 2100. To prevent coastal floods resulted from the sea level rising, different flood control structures have been built, e.g. the Thames barrier on the Thames River in London (UK), with acceptable protection levels at least so far. Gothenburg located on the southwest coast of Sweden, with the River Göta älv running through it, is one of vulnerable cities to the accelerated rises in mean sea level. Developing a water level model by MATLAB, we evaluated using a sea barrage in the Göta älv River as the flood control structure for protecting the Gothenburg city during this century. Considering three operational scenarios for two barriers in upstream and downstream, the highest sea level was estimated to + 2.95 m above the current mean sea level by 2100. To verify flood protection against such high sea levels, both barriers have to be closed. To prevent high water level in the River Göta älv reservoir, the barriers would be open when the sea level is low. The suggested flood control structures would successfully protect the city from flooding events during this century.Keywords: climate change, flood control structures, gothenburg, sea level rising, water level mode
Procedia PDF Downloads 356353 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 268352 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 189351 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 87350 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System
Authors: O. Afshar
Abstract:
A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.Keywords: receiver tube, heat convection, heat conduction, Nusselt number
Procedia PDF Downloads 356349 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems
Procedia PDF Downloads 364348 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 141347 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 267346 An Analysis of the Temporal Aspects of Visual Attention Processing Using Rapid Series Visual Processing (RSVP) Data
Authors: Shreya Borthakur, Aastha Vartak
Abstract:
This Electroencephalogram (EEG) project on Rapid Visual Serial Processing (RSVP) paradigm explores the temporal dynamics of visual attention processing in response to rapidly presented visual stimuli. The study builds upon previous research that used real-world images in RSVP tasks to understand the emergence of object representations in the human brain. The objectives of the research include investigating the differences in accuracy and reaction times between 5 Hz and 20 Hz presentation rates, as well as examining the prominent brain waves, particularly alpha and beta waves, associated with the attention task. The pre-processing and data analysis involves filtering EEG data, creating epochs for target stimuli, and conducting statistical tests using MATLAB, EEGLAB, Chronux toolboxes, and R. The results support the hypotheses, revealing higher accuracy at a slower presentation rate, faster reaction times for less complex targets, and the involvement of alpha and beta waves in attention and cognitive processing. This research sheds light on how short-term memory and cognitive control affect visual processing and could have practical implications in fields like education.Keywords: RSVP, attention, visual processing, attentional blink, EEG
Procedia PDF Downloads 69345 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller
Procedia PDF Downloads 547344 Atomic Absorption Spectroscopic Analysis of Heavy Metals in Cancerous Breast Tissues among Women in Jos, Nigeria
Authors: Opeyemi Peter Idowu
Abstract:
Breast cancer is prevalent in northern Nigerian women, most especially in Jos, Plateau State, owing to anthropogenic activities such as solid earth mineral mining as far back as 1904. In this study, atomic absorption spectrometry was used to determine the concentration of eight heavy metals (Cd, As, Cr, Cu, Fe, Pb, Ni, and Zn) in cancerous and non-cancerous breast tissues of Jos Nigerian Women. The levels of heavy metals ranged from 1.08 to 29.34 mg/kg, 0.29 to 10.76 mg/kg, 0.35 to 51.93 mg/kg, 5.15 to 62.93 mg/kg, 11.64 to 51.10 mg/kg, 0.42 to 83.16 mg/kg, 2.08 to 43.07 mg/kg and 1.67 to 71.53 mg/kg for Cd, As, Cr, Cu, Fe, Pb, Ni and Zn respectively. Using MATLAB R2016a, significant differences (tᵥ = 0.0041 - 0.0317) existed between the levels of all the heavy metals in cancerous and non-cancerous breast tissues except Fe. At 0.01 level of significance, a positive significant correlation existed between Pb and Fe, Pb and Cu, Pb and Fe, Ni and Fe, Cr and Pb, as well as Ni and Cr (r = 0.583 – 0.998) in cancerous breast tissues. Using ANOVA, significant differences also occurred in the levels of these heavy metals in cancerous breast tissues (p = 1.910510×10⁻²⁶). The relatively high levels of the cancer-induced heavy metals (Cd, As, Cr, and Pb) compared with control indicated contamination or exposure to heavy metals, which could be the major cause of cancer in these female subjects. This was evidence of contamination as a result of exposure by ingestion, inhalation, or other means to one anthropogenic activity of the other. Therapeutic measures such as gastric lavage, ascorbic acid consumption, and divalent cation treatment are all effective ways to manage heavy metal toxicity in the subjects to lower the risk of breast cancer.Keywords: breast cancer, heavy metals, spectroscopy, bio-accumulation
Procedia PDF Downloads 26343 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm
Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei
Abstract:
This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network
Procedia PDF Downloads 669342 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)
Procedia PDF Downloads 507341 Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling
Authors: A. Derrouazin, N. Mekkakia-M, R. Taleb, M. Helaimi, A. Benbouali
Abstract:
Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day.Keywords: photovoltaic (PV), wind turbine, battery, microcontroller, fuzzy control (FC), Matlab
Procedia PDF Downloads 648340 The Relationship between Spanish Economic Variables: Evidence from the Wavelet Techniques
Authors: Concepcion Gonzalez-Concepcion, Maria Candelaria Gil-Fariña, Celina Pestano-Gabino
Abstract:
We analyze six relevant economic and financial variables for the period 2000M1-2015M3 in the context of the Spanish economy: a financial index (IBEX35), a commodity (Crude Oil Price in euros), a foreign exchange index (EUR/USD), a bond (Spanish 10-Year Bond), the Spanish National Debt and the Consumer Price Index. The goal of this paper is to analyze the main relations between them by computing the Wavelet Power Spectrum and the Cross Wavelet Coherency associated with Morlet wavelets. By using a special toolbox in MATLAB, we focus our interest on the period variable. We decompose the time-frequency effects and improve the interpretation of the results by non-expert users in the theory of wavelets. The empirical evidence shows certain instability periods and reveals various changes and breaks in the causality relationships for sample data. These variables were individually analyzed with Daubechies Wavelets to visualize high-frequency variance, seasonality, and trend. The results are included in Proceeding 20th International Academic Conference, 2015, International Institute of Social and Economic Sciences (IISES), Madrid.Keywords: economic and financial variables, Spain, time-frequency domain, wavelet coherency
Procedia PDF Downloads 240339 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon
Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon
Abstract:
A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution
Procedia PDF Downloads 231338 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results
Procedia PDF Downloads 556337 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 497336 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 389335 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. RamaKrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench
Procedia PDF Downloads 468334 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 143333 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study
Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu
Abstract:
A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective
Procedia PDF Downloads 144