Search results for: machine performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14491

Search results for: machine performance

8851 Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study

Authors: Raman Kumar, Jasgurpreet Singh Chohan, Chander Shekhar Verma

Abstract:

Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool.

Keywords: lean tool, fish-bone diagram, cycle time reduction, case study

Procedia PDF Downloads 118
8850 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 221
8849 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications

Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar

Abstract:

The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.

Keywords: supersonic nozzle, Chevron, acoustic level, shape optimization of Chevron nozzles, jet noise suppression

Procedia PDF Downloads 498
8848 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 63
8847 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 24
8846 Teachers’ Education in Brazil: A Case Study on Students’ Performance

Authors: Priscila A. M. Rodrigues

Abstract:

In Brazil, higher education is usually offered in three parts of the day: in the morning, afternoon and evening. Students have to decide what part of the day they are going to study in the application process. Most of the admitted students who choose to study in the evening also work during the day, because of their financial conditions. Brazilian higher education courses in the evening were initially created to meet the demand for teacher training. These teacher-training courses are socially discredited and considered easily accessible in the country, mostly due to the fact that students who enroll for those courses come from very poor basic education. The research has analyzed the differences between the social profiles and studying conditions of students of teacher education, especially the training intended for would-be elementary education teachers. An investigation has been conducted with these undergraduate students, who were divided into a group of those who study both in the morning and in the afternoon (group 1) and a group of those who study in the evening (group 2). The hypothesis predicted that students in group 1 would perform better than students in group 2. The analysis of training and studying conditions departed from the point of view of students and their teachers. The hypothesis predicted that students in group 1 would perform better than students in group 2. The analysis of training and studying conditions departed from the point of view of students and their teachers. Data was collected from survey, qualitative interviews, field observation and reports from students. Sociological concepts of habitus, cultural capital, trajectories and strategies are essential for this study as well as the literature on quality of higher education. The research revealed that there are differences of studying conditions between group 1 and group 2, precisely when it comes to the university atmosphere, that is to say, academic support resources and enrichment activities which promote educational, cultural and social opportunities, for example conferences, events, scholarships of different types, etc. In order to counteract the effects of their poor educational performance, students who generally come from popular strata require conditions of greater dedication and investment in higher education, which most of them do not have. Despite the considerable difficulties that students in group 2 encounter in their academic experience, the university experience per se brings a gain for the lives of these students, which translates into the expansion of their capital structure – i.e. symbolic, cultural and educational capital – with repercussions on their social trajectory, especially in professional conditions.

Keywords: higher education, higher education students’ performance, quality of higher education, teacher’s education

Procedia PDF Downloads 266
8845 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 394
8844 Thatsana Nataya Chatri Dance: A Creative Conservation Process of Cultural Performing Arts for Competition

Authors: Dusittorn Ngamying

Abstract:

The research on Thatsana Nataya Chatri Dance: A Creative Conservation Process of Cultural Performing Arts for Competition was aimed at 1) studying the creative conservation process of cultural performing arts; 2) creating conservation process of cultural performing arts of Thatsana Nataya Chatri dance; and 3) utilizing the created performing arts for the competition. The study was conducted using the qualitative research method in the Central region provinces of Thailand through documentary study and data from field observations, interviews and focus group meetings. Data were collected from 50 informants consisting of 10 experts on the subject, 30 practitioners and 10 general information providers. The data collection instruments consisted of participatory and non-participatory forms, structured and non-structured interview schedules and focus group note forms. The data were verified by the triangulation technique and presented using the descriptive analysis. The results of the study reveal that the creative conservation process of cultural performing arts should be initiated by those who have experienced using a prior knowledge in the pursuit of new knowledge. The new knowledge is combined to generate creative work with the conservation process in 9 aspects: acquiring the related knowledge, creating theme and inspiration, designing the music and melody, designing costumes, inventing dance postures, selecting dancers, transferring the dance postures, preparing the stage and performance equipment, planning the performance event. Inventing the conservation process of cultural performing arts Thatsana Nataya Chatri dance consists of 33 dance postures and 14 transformed patterns. The performance requires 6 dancers, 3 males and 3 females. Costume features both male and female classical and modified dancer’s costumes. The duration of the show takes 5 minutes. As for the application for the competition, this creative work has been selected by Dramatic Works Association (Thailand) to represent Thailand at the Lombok International Dance Sports Festival 2015 held at Lombok, Indonesia. The team has been awarded the Second Place in the Traditional Dance category.

Keywords: creative conservation process, cultural performing arts, Thatsana Nataya Chatri dance, competition

Procedia PDF Downloads 207
8843 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 71
8842 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle

Procedia PDF Downloads 122
8841 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: cloud service, multi-tenancy, NFC, IAM, mobile device

Procedia PDF Downloads 420
8840 Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel

Authors: Nixon Kuruvila, H. V. Ravindra

Abstract:

Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.

Keywords: dimensional accuracy (DA), regression analysis (RA), Taguchi method (TM), volumetric material removal rate (VMRR)

Procedia PDF Downloads 393
8839 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 55
8838 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data

Authors: Mahdi Salarian, Xi Xu, Rashid Ansari

Abstract:

Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.

Keywords: localization, retrieval, GPS uncertainty, bag of word

Procedia PDF Downloads 273
8837 Environmental Performance Improvement of Additive Manufacturing Processes with Part Quality Point of View

Authors: Mazyar Yosofi, Olivier Kerbrat, Pascal Mognol

Abstract:

Life cycle assessment of additive manufacturing processes has evolved significantly since these past years. A lot of existing studies mainly focused on energy consumption. Nowadays, new methodologies of life cycle inventory acquisition came through the literature and help manufacturers to take into account all the input and output flows during the manufacturing step of the life cycle of products. Indeed, the environmental analysis of the phenomena that occur during the manufacturing step of additive manufacturing processes is going to be well known. Now it becomes possible to count and measure accurately all the inventory data during the manufacturing step. Optimization of the environmental performances of processes can now be considered. Environmental performance improvement can be made by varying process parameters. However, a lot of these parameters (such as manufacturing speed, the power of the energy source, quantity of support materials) affect directly the mechanical properties, surface finish and the dimensional accuracy of a functional part. This study aims to improve the environmental performance of an additive manufacturing process without deterioration of the part quality. For that purpose, the authors have developed a generic method that has been applied on multiple parts made by additive manufacturing processes. First, a complete analysis of the process parameters is made in order to identify which parameters affect only the environmental performances of the process. Then, multiple parts are manufactured by varying the identified parameters. The aim of the second step is to find the optimum value of the parameters that decrease significantly the environmental impact of the process and keep the part quality as desired. Finally, a comparison between the part made by initials parameters and changed parameters is made. In this study, the major finding claims by authors is to reduce the environmental impact of an additive manufacturing process while respecting the three quality criterion of parts, mechanical properties, dimensional accuracy and surface roughness. Now that additive manufacturing processes can be seen as mature from a technical point of view, environmental improvement of these processes can be considered while respecting the part properties. The first part of this study presents the methodology applied to multiple academic parts. Then, the validity of the methodology is demonstrated on functional parts.

Keywords: additive manufacturing, environmental impact, environmental improvement, mechanical properties

Procedia PDF Downloads 272
8836 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad

Abstract:

Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.

Keywords: optimization, voltage transformer, ferroresonance, modeling, damper

Procedia PDF Downloads 79
8835 The OLOS® Way to Cultural Heritage: User Interface with Anthropomorphic Characteristics

Authors: Daniele Baldacci, Remo Pareschi

Abstract:

Augmented Reality and Augmented Intelligence are radically changing information technology. The path that starts from the keyboard and then, passing through milestones such as Siri, Alexa and other vocal avatars, reaches a more fluid and natural communication with computers, thus converting the dichotomy between man and machine into a harmonious interaction, now heads unequivocally towards a new IT paradigm, where holographic computing will play a key role. The OLOS® platform contributes substantially to this trend in that it infuses computers with human features, by transferring the gestures and expressions of persons of flesh and bones to anthropomorphic holographic interfaces which in turn will use them to interact with real-life humans. In fact, we could say, boldly but with a solid technological background to back the statement, that OLOS® gives reality to an altogether new entity, placed at the exact boundary between nature and technology, namely the holographic human being. Holographic humans qualify as the perfect carriers for the virtual reincarnation of characters handed down from history and tradition. Thus, they provide for an innovative and highly immersive way of experiencing our cultural heritage as something alive and pulsating in the present.

Keywords: digital cinematography, human-computer interfaces, holographic simulation, interactive museum exhibits

Procedia PDF Downloads 104
8834 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures

Authors: Galih Permana, Yuskar Lase

Abstract:

In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.

Keywords: building, coupling beam, damper, nonlinear time history analysis

Procedia PDF Downloads 154
8833 The European Research and Development Project Improved Nuclear Site Characterization for Waste Minimization in Decommissioning under Constrained Environment: Focus on Performance Analysis and Overall Uncertainty

Authors: M. Crozet, D. Roudil, T. Branger, S. Boden, P. Peerani, B. Russell, M. Herranz, L. Aldave de la Heras

Abstract:

The EURATOM work program project INSIDER (Improved Nuclear Site Characterization for Waste minimization in Decommissioning under Constrained Environment) was launched in June 2017. This 4-year project has 18 partners and aims at improving the management of contaminated materials arising from decommissioning and dismantling (D&D) operations by proposing an integrated methodology of characterization. This methodology is based on advanced statistical processing and modelling, coupled with adapted and innovative analytical and measurement methods, with respect to sustainability and economic objectives. In order to achieve these objectives, the approaches will be then applied to common case studies in the form of Inter-laboratory comparisons on matrix representative reference samples and benchmarking. Work Package 6 (WP6) ‘Performance analysis and overall uncertainty’ is in charge of the analysis of the benchmarking on real samples, the organisation of inter-laboratory comparison on synthetic certified reference materials and the establishment of overall uncertainty budget. Assessment of the outcome will be used for providing recommendations and guidance resulting in pre-standardization tests.

Keywords: decommissioning, sampling strategy, research and development, characterization, European project

Procedia PDF Downloads 352
8832 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 16
8831 Analyzing the Feasibility of Low-Cost Composite Wind Turbine Blades for Residential Energy Production

Authors: Aravindhan Nepolean, Chidamabaranathan Bibin, Rajesh K., Gopinath S., Ashok Kumar R., Arun Kumar S., Sadasivan N.

Abstract:

Wind turbine blades are an important parameter for surging renewable energy production. Optimizing blade profiles and developing new materials for wind turbine blades take a lot of time and effort. Even though many standards for wind turbine blades have been developed for large-scale applications, they are not more effective in small-scale applications. We used acrylonitrile-butadiene-styrene to make small-scale wind turbine blades in this study (ABS). We chose the material because it is inexpensive and easy to machine into the desired form. They also have outstanding chemical, stress, and creep resistance. The blade measures 332 mm in length and has a 664 mm rotor diameter. A modal study of blades is carried out, as well as a comparison with current e-glass fiber. They were able to balance the output with less vibration, according to the findings. Q blade software is used to simulate rotating output. The modal analysis testing and prototype validation of wind turbine blades were used for experimental validation.

Keywords: acrylonitrile-butadiene-styrene, e-glass fiber, modal, renewable energy, q-blade

Procedia PDF Downloads 141
8830 Microbial Load of Fecal Material of Broiler Birds Administered with Lagenaria Breviflora Extract

Authors: Adeleye O. O., T. M. Obuotor, A. O. Kolawole, I. O. Opowoye, M. I. Olasoju, L. T. Egbeyale, R. A. Ajadi

Abstract:

This study investigated the effect of Lagenaria breviflora on broiler poultry birds, including its effect on the microbial count of the poultry droppings. A total of 240-day-old broiler chicks were randomly assigned to six groups, with four replicates per group. The first group was the control, while the other four groups were fed water containing 300g/L and 500g/L concentrations of Lagenaria breviflora twice and thrice daily. The microbial load was determined using the plate count method. The results showed that the administration of Lagenaria breviflora in the water of broiler birds significantly improved their growth performance with an average weight gain range of 1.845g - 2.241g. Mortality rate was at 0%. The study also found that Lagenaria breviflora had a significant effect on the microbial count of the poultry droppings with colony count values from 3.5 x 10-7 - 9.9 x10-7CFU/ml, The total coliforms (Escherichia coli, and Salmonella sp.) was obtained as 1 x 10 -5CFU/ml. The reduction in microbial counts of the poultry droppings could be attributed to the antimicrobial properties of Lagenaria breviflora, which contain phytochemicals reported to possess antimicrobial activity. Therefore, the inclusion of Lagenaria breviflora in the diets of broiler poultry could be an effective strategy for improving growth performance and immune function and reducing the microbial load of poultry droppings, which can help to mitigate the risk of disease transmission to humans and other animals.

Keywords: gut microbes, bacterial count, lagenaria breviflora, coliforms

Procedia PDF Downloads 81
8829 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 68
8828 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 202
8827 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 225
8826 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.

Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM

Procedia PDF Downloads 433
8825 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 119
8824 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo

Abstract:

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Keywords: training, rehabilitation, SCI patient, welfare, robot

Procedia PDF Downloads 413
8823 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 317
8822 The Effect of Post-Acute Stroke Inpatient Rehabilitation under per Diem Payment: A Pilot Study

Authors: Chung-Yuan Wang, Kai-Chun Lee, Min-Hung Wang, Yu-Ren Chen, Hung-Sheng Lin, Sen-Shan Fan

Abstract:

Taiwan National Health Insurance (NHI) was launched in 1995. It is an important social welfare policy in Taiwan. Regardless of the diversified social and economic status, universal coverage of NHI was assured. In order to regain better self-care performance, stroke people received in-patient and out-patient rehabilitation. Though NHI limited the rehabilitation frequency to one per day, the cost of rehabilitation still increased rapidly. Through the intensive rehabilitation during the post-stroke rehabilitation golden period, stroke patients might decrease their disability and shorten the rehabilitation period. Therefore, the aim of this study was to investigate the effect of intensive post-acute stroke rehabilitation in hospital under per diem payment. This study was started from 2014/03/01. The stroke patients who were admitted to our hospital or medical center were indicated to the study. The neurologists would check his modified Rankin Scale (mRS). Only patients with their mRS score between 2 and 4 were included to the study. Patients with unclear consciousness, unstable medical condition, unclear stroke onset date and no willing for 3 weeks in-patient intensive rehabilitation were excluded. After the physiatrist’s systemic evaluation, the subjects received intensive rehabilitation programs. The frequency of rehabilitation was thrice per day. Physical therapy, occupational therapy and speech/swallowing therapy were included in the programs for the needs of the stroke patients. Activity daily life performance (Barthel Index) and functional balance ability (Berg Balance Scale) were used to measure the training effect. During 3/1 to 5/31, thirteen subjects (five male and eight female) were included. Seven subjects were aged below 60. Three subjects were aged over 70. Most of the subjects (seven subjects) received intensive post-stroke rehabilitation for three weeks. Three subjects drop out from the programs and went back home respectively after receiving only 7, 10, and 13 days rehabilitation. Among these 13 subjects, nine of them got improvement in activity daily life performance (Barthel Index score). Ten of them got improvement in functional balance ability (Berg Balance Scale). The intensive post-acute stroke rehabilitation did help stroke patients promote their health in our study. Not only their functional performance improved, but also their self-confidence improved. Furthermore, their family also got better health status. Stroke rehabilitation under per diem payment was noted in long-term care institution in developed countries. Over 95% populations in Taiwan were supported under the Taiwan's National Health Insurance system, but there was no national long-term care insurance system. Most of the stroke patients in Taiwan live with his family and continue their rehabilitation programs from out-patient department. This pilot study revealed the effect of intensive post-acute stroke rehabilitation in hospital under per diem payment. The number of the subjects and the study period were limited. Thus, further study will be needed.

Keywords: rehabilitation, post-acute stroke, per diem payment, NHI

Procedia PDF Downloads 296