Search results for: environmental virtues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6851

Search results for: environmental virtues

1241 Improving the Competency of Undergraduate Nursing Students in Addressing a Timely Public Health Issue

Authors: Tsu-Yin Wu, Jenni Hoffman, Lydia McMurrows, Sarah Lally

Abstract:

Recent events of the Flint Water Crisis and elevated lead levels in Detroit public school water have highlighted a specific public health disparity and shown the need for better education of healthcare providers on lead education. Identifying children and pregnant women with a high risk for lead poisoning and ensuring lead testing is completed is critical. The purpose of this study is to explore the impact of an educational intervention on knowledge and confidence levels among nursing students enrolled in the prelicensure Bachelor of Science in Nursing (BSN) and Registered Nurse to BSN program (R2B). The study used both quantitative and qualitative research methods to assess the impact of multi-modal pedagogy on knowledge and confidence of lead screening and prevention among prelicensure and R2B nursing students. The students received lead poisoning and prevention content in addition to completing an e-learning module developed by the Pediatric Environmental Health Specialty Units. A total of 115 students completed the pre-and post-test instrument that consisted of demographic, lead knowledge, and confidence items. Despite the increase of total knowledge, three dimensions of lead poisoning, and confidence from pre- to post-test scores for both groups, there was no statistical significance on the increase between prelicensure and R2B students. Thematic analysis of qualitative data showed five themes from participants' learning experiences: lead exposure, signs and symptoms of lead poisoning, screening and diagnosis, prevention, and policy and statewide issues. The study is limited by a small sample and participants recalling some correct answers from the pretest, thus, scoring higher on the post-test. The results contribute to the minimally existent literature examining a critical public health concern regarding lead health exposure and prevention education of nursing students. Incorporating such content area into the nursing curriculum is essential in ensuring that such public health disparities are mitigated.

Keywords: lead poisoning, emerging public health issue, community health, nursing edducation

Procedia PDF Downloads 199
1240 12 Real Forensic Caseworks Solved by the DNA STR-Typing of Skeletal Remains Exposed to Extremely Environment Conditions without the Conventional Bone Pulverization Step

Authors: Chiara Della Rocca, Gavino Piras, Andrea Berti, Alessandro Mameli

Abstract:

DNA identification of human skeletal remains plays a valuable role in the forensic field, especially in missing persons and mass disaster investigations. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because they are often the only biological materials remaining. However, the major limitation of using these compact samples relies on the extremely time–consuming and labor–intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step. In this context, a DNA extraction assay called the TBone Ex kit (DNA Chip Research Inc.) was developed to digest bone chips without powdering. Here, we simultaneously analyzed bone and tooth samples that arrived at our police laboratory and belonged to 15 different forensic casework that occurred in Sardinia (Italy). A total of 27 samples were recovered from different scenarios and were exposed to extreme environmental factors, including sunlight, seawater, soil, fauna, vegetation, and high temperature and humidity. The TBone Ex kit was used prior to the EZ2 DNA extraction kit on the EZ2 Connect Fx instrument (Qiagen), and high-quality autosomal and Y-chromosome STRs profiles were obtained for the 80% of the caseworks in an extremely short time frame. This study provides additional support for the use of the TBone Ex kit for digesting bone fragments/whole teeth as an effective alternative to pulverization protocols. We empirically demonstrated the effectiveness of the kit in processing multiple bone samples simultaneously, largely simplifying the DNA extraction procedure and the good yield of recovered DNA for downstream genetic typing in highly compromised forensic real specimens. In conclusion, this study turns out to be extremely useful for forensic laboratories, to which the various actors of the criminal justice system – such as potential jury members, judges, defense attorneys, and prosecutors – required immediate feedback.

Keywords: DNA, skeletal remains, bones, tbone ex kit, extreme conditions

Procedia PDF Downloads 50
1239 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 34
1238 Project Stakeholders' Perceptions of Sustainability: A Case Example From the Turkish Construction Industry

Authors: F. Heyecan Giritli, Gizem Akgül

Abstract:

Because of the raising population of world; the need for houses, buildings and infrastructures are increasing rapidly. Energy and water consumption, waste production continues to increase. If this situation of resources continues, there will be a significant loss for next generations. Therefore, there are a lot of researches and solutions developed in the world. Also sustainability criteria are collected together by some countries to serve construction industry with certification systems. Sustainable building production process’s scope requires different path from traditional building production process. Moreover, the key objective of sustainable buildings is that the process includes whole life cycle duration. The process approaches from the decision of the project to the end of it; so the project team is needed from the beginning of the integrated project delivery model. Further more, by defining project team at the beginning of the project provides communication among the team members and defined problem solving and decision making methods. In this research includes the certification systems among the world to comprehend the head lines and assessment criteria. Therefore, it is understand that usually all green building criteria have the same contents. The aim of this research is to assess the sustainable project stakeholder’ perceptions in Turkish construction industry from the point of occupation, job title and years of experience. Therefore, a survey is made to assess the perceptions of each attendant. In Turkey, sustainability criteria are not clearly defined; on the other hand some regulations like waste management, energy efficiency are made by legal agencies. LEED certification system is the most popular system in Turkey that has attended and certificated. From the LEED official data, it’s understood that 308 project registered in Turkey. Therefore, LEED sustainability criteria are used in the survey. Head lines of LEED certification criteria; sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality, innovation and regional priority are indicated to assess the perceptions of survey participants. Moreover, only surveying of criteria are not enough; so the equipment, methods, risks and benefits also considered.

Keywords: LEED, sustainability, perceptions, stakeholders, construction, Turkey, risk, benefit

Procedia PDF Downloads 303
1237 The Constraints of Modern Islamic Boarding School's Strategy in Addressing Physical Violence: A Case Study in Indonesia

Authors: Syauqi Asfiya R.

Abstract:

This study examines the constraints faced by Islamic boarding school (Pesantren) in Indonesia in effectively addressing physical violence within their educational institutions. The vulnerability to violence in the education sector remains pervasive, including in Pesantren, primarily due to the residential nature of the boarding school system, which necessitates round-the-clock interaction among students from diverse backgrounds. Additionally, environmental factors, parenting styles, individual characteristics, and media influences further complicate the conditions within Pesantren. Numerous cases of physical violence have been reported, underscoring the need to identify the constraints of violence prevention strategies implemented by Pesantren. Adopting a case study approach, this research focuses on a Modern Pesantren in Tangerang and utilizes interviews conducted with 20 victims of violence to explore the aspects of Pesantren's violence prevention strategies that may have been overlooked. The findings indicate that many students face a dilemma when reporting the violence they experience, as the imposed sanctions often prove excessively severe and carry the risk of exacerbating the violence perpetrated by the offenders. Consequently, numerous victims choose to remain silent, thereby enabling the perpetuation of violence. Moreover, senior students (mudabbir) are prohibited from giving punishment, but there are still many who punish other students based on their personal moods. Furthermore, violence is also perpetrated by religious teachers (ustadz), despite their responsibility for addressing such issues. The evaluation process often follows a unidirectional approach wherein the santri have limited freedom compared to the Mudabbir or ustadz when it comes to providing feedback. Additionally, sentiment within specific student generations is reinforced due to the segregation of dormitories based on cohorts. Lastly, the absence of psychologists to address the trauma experienced by victims further exacerbates the situation. This research sheds light on the constraints faced by Pesantren in effectively preventing physical violence and emphasizes the importance of implementing comprehensive measures to create safer and nurturing learning environments within these institutions.

Keywords: physical violence, islam, boarding school, constraint

Procedia PDF Downloads 77
1236 Effect of Proteoliposome Concentration on Salt Rejection Rate of Polysulfone Membrane Prepared by Incorporation of Escherichia coli and Halomonas elongata Aquaporins

Authors: Aysenur Ozturk, Aysen Yildiz, Hilal Yilmaz, Pinar Ergenekon, Melek Ozkan

Abstract:

Water scarcity is one of the most important environmental problems of the World today. Desalination process is regarded as a promising solution to solve drinking water problem of the countries facing with water shortages. Reverse osmosis membranes are widely used for desalination processes. Nano structured biomimetic membrane production is one of the most challenging research subject for improving water filtration efficiency of the membranes and for reducing the cost of desalination processes. There are several researches in the literature on the development of novel biomimetic nanofiltration membranes by incorporation of aquaporin Z molecules. Aquaporins are cell membrane proteins that allow the passage of water molecules and reject all other dissolved solutes. They are present in cell membranes of most of the living organisms and provide high water passage capacity. In this study, GST (Glutathione S-transferas) tagged E. coli aquaporinZ and H. elongate aquaporin proteins, which were previously cloned and characterized, were purified from E. coli BL21 cells and used for fabrication of modified Polysulphone Membrane (PS). Aquaporins were incorporated on the surface of the membrane by using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipids as carrier liposomes. Aquaporin containing proteoliposomes were immobilized on the surface of the membrane with m-phenylene-diamine (MPD) and trimesoyl chloride (TMC) rejection layer. Water flux, salt rejection and glucose rejection performances of the thin film composite membranes were tested by using Dead-End Reactor Cell. In this study, effect of proteoliposome concentration, and filtration pressure on water flux and salt rejection rate of membranes were investigated. Type of aquaporin used for membrane fabrication, flux and pressure applied for filtration were found to be important parameters affecting rejection rates. Results suggested that optimization of concentration of aquaporin carriers (proteoliposomes) on the membrane surface is necessary for fabrication of effective composite membranes used for different purposes.

Keywords: aquaporins, biomimmetic membranes, desalination, water treatment

Procedia PDF Downloads 198
1235 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 406
1234 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil

Authors: Tanios Saliba, Jad Wakim, Elie Awwad

Abstract:

Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.

Keywords: bottom ash, Clayey soil, mechanical properties, tests

Procedia PDF Downloads 177
1233 Study of Climate Change Process on Hyrcanian Forests Using Dendroclimatology Indicators (Case Study of Guilan Province)

Authors: Farzad Shirzad, Bohlol Alijani, Mehry Akbary, Mohammad Saligheh

Abstract:

Climate change and global warming are very important issues today. The process of climate change, especially changes in temperature and precipitation, is the most important issue in the environmental sciences. Climate change means changing the averages in the long run. Iran is located in arid and semi-arid regions due to its proximity to the equator and its location in the subtropical high pressure zone. In this respect, the Hyrcanian forest is a green necklace between the Caspian Sea and the south of the Alborz mountain range. In the forty-third session of UNESCO, it was registered as the second natural heritage of Iran. Beech is one of the most important tree species and the most industrial species of Hyrcanian forests. In this research, using dendroclimatology, the width of the tree ring, and climatic data of temperature and precipitation from Shanderman meteorological station located in the study area, And non-parametric Mann-Kendall statistical method to investigate the trend of climate change over a time series of 202 years of growth ringsAnd Pearson statistical method was used to correlate the growth of "ring" growth rings of beech trees with climatic variables in the region. The results obtained from the time series of beech growth rings showed that the changes in beech growth rings had a downward and negative trend and were significant at the level of 5% and climate change occurred. The average minimum, medium, and maximum temperatures and evaporation in the growing season had an increasing trend, and the annual precipitation had a decreasing trend. Using Pearson method during fitting the correlation of diameter of growth rings with temperature, for the average in July, August, and September, the correlation is negative, and the average temperature in July, August, and September is negative, and for the average The average maximum temperature in February was correlation-positive and at the level of 95% was significant, and with precipitation, in June the correlation was at the level of 95% positive and significant.

Keywords: climate change, dendroclimatology, hyrcanian forest, beech

Procedia PDF Downloads 105
1232 Energy Security and Sustainable Development: Challenges and Prospects

Authors: Abhimanyu Behera

Abstract:

Over the past few years, energy security and sustainable development have moved rapidly into the global agenda. There are two main reasons: first, the impact of high and often volatile energy prices; second, concerns over environmental sustainability particularly about the global climate. Both issues are critically important in which impressive economic growth has boosted the demand for energy and put corresponding strains on the environment. Energy security is a broad concept that focuses on energy availability and pricing. Specifically, it refers to the ability of the energy supply system i.e. suppliers, transporters, distributors and regulatory, financial and R&D institutions to deliver the amount of competitively priced energy that customers demand, within accepted standards of reliability, timeliness, quality, safety. Traditionally, energy security has been defined in the context of the geopolitical risks to external oil supplies but today it is encompassing all energy forms, all the external and internal links bringing the energy to the final consumer, and all the many ways energy supplies can be disrupted including equipment malfunctions, system design flaws, operator errors, malicious computer activities, deficient market and regulatory frameworks, corporate financial problems, labour actions, severe weather and natural events, aggressive acts (e.g. war, terrorism and sabotage), and geopolitical disruptions. In practice, the most challenging disruptions are those linked to: 1) extreme weather events; 2) mismatched electricity supply and demand; 3) regulatory failures; and 4) concentration of oil and gas resources in certain regions of the world. However, insecure energy supplies inhibit development by raising energy costs and imposing expensive cuts in services when disruptions actually occur. The energy supply sector can best advance sustainable development by producing and delivering secure and environmentally-friendly sources of energy and by increasing the efficiency of energy use. With this objective, this paper seeks to highlight the significance of energy security and sustainable development in today’s world. Moreover, it critically overhauls the major challenges towards sustainability of energy security and what are the major policies are taken to overcome these challenges by Government is lucidly explicated in this paper.

Keywords: energy, policies, security, sustainability

Procedia PDF Downloads 390
1231 Optimization of Water Pipeline Routes Using a GIS-Based Multi-Criteria Decision Analysis and a Geometric Search Algorithm

Authors: Leon Mortari

Abstract:

The Metropolitan East region of Rio de Janeiro state, Brazil, faces a historic water scarcity. Among the alternatives studied to solve this situation, the possibility of adduction of the available water in the reservoir Lagoa de Juturnaíba to supply the region's municipalities stands out. The allocation of a linear engineering project must occur through an evaluation of different aspects, such as altitude, slope, proximity to roads, distance from watercourses, land use and occupation, and physical and chemical features of the soil. This work aims to apply a multi-criteria model that combines geoprocessing techniques, decision-making, and geometric search algorithm to optimize a hypothetical adductor system in the scenario of expanding the water supply system that serves this region, known as Imunana-Laranjal, using the Lagoa de Juturnaíba as the source. It is proposed in this study, the construction of a spatial database related to the presented evaluation criteria, treatment and rasterization of these data, and standardization and reclassification of this information in a Geographic Information System (GIS) platform. The methodology involves the integrated analysis of these criteria, using their relative importance defined by weighting them based on expert consultations and the Analytic Hierarchy Process (AHP) method. Three approaches are defined for weighting the criteria by AHP: the first treats all criteria as equally important, the second considers weighting based on a pairwise comparison matrix, and the third establishes a hierarchy based on the priority of the criteria. For each approach, a distinct group of weightings is defined. In the next step, map algebra tools are used to overlay the layers and generate cost surfaces, that indicates the resistance to the passage of the adductor route, using the three groups of weightings. The Dijkstra algorithm, a geometric search algorithm, is then applied to these cost surfaces to find an optimized path within the geographical space, aiming to minimize resources, time, investment, maintenance, and environmental and social impacts.

Keywords: geometric search algorithm, GIS, pipeline, route optimization, spatial multi-criteria analysis model

Procedia PDF Downloads 35
1230 Application of Geotube® Method for Sludge Handling in Adaro Coal Mine

Authors: Ezman Fitriansyah, Lestari Diah Restu, Wawan

Abstract:

Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum.

Keywords: geotube, mine water, settling pond, sludge handling, wastewater treatment

Procedia PDF Downloads 201
1229 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 368
1228 Determinants of Diarrhoea Prevalence Variations in Mountainous Informal Settlements of Kigali City, Rwanda

Authors: Dieudonne Uwizeye

Abstract:

Introduction: Diarrhoea is one of the major causes of morbidity and mortality among communities living in urban informal settlements of developing countries. It is assumed that mountainous environment introduces variations of the burden among residents of the same settlements. Design and Objective: A cross-sectional study was done in Kigali to explore the effect of mountainous informal settlements on diarrhoea risk variations. Data were collected among 1,152 households through household survey and transect walk to observe the status of sanitation. The outcome variable was the incidence of diarrhoea among household members of any age. The study used the most knowledgeable person in the household as the main respondent. Mostly this was the woman of the house as she was more likely to know the health status of every household member as she plays various roles: mother, wife, and head of the household among others. The analysis used cross tabulation and logistic regression analysis. Results: Results suggest that risks for diarrhoea vary depending on home location in the settlements. Diarrhoea risk increased as the distance from the road increased. The results of the logistic regression analysis indicate the adjusted odds ratio of 2.97 with 95% confidence interval being 1.35-6.55 and 3.50 adjusted odds ratio with 95% confidence interval being 1.61-7.60 in level two and three respectively compared with level one. The status of sanitation within and around homes was also significantly associated with the increase of diarrhoea. Equally, it is indicated that stable households were less likely to have diarrhoea. The logistic regression analysis indicated the adjusted odds ratio of 0.45 with 95% confidence interval being 0.25-0.81. However, the study did not find evidence for a significant association between diarrhoea risks and household socioeconomic status in the multivariable model. It is assumed that environmental factors in mountainous settings prevailed. Households using the available public water sources were more likely to have diarrhoea in their households. Recommendation: The study recommends the provision and extension of infrastructure for improved water, drainage, sanitation and wastes management facilities. Equally, studies should be done to identify the level of contamination and potential origin of contaminants for water sources in the valleys to adequately control the risks for diarrhoea in mountainous urban settings.

Keywords: urbanisation, diarrhoea risk, mountainous environment, urban informal settlements in Rwanda

Procedia PDF Downloads 173
1227 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study

Authors: Mohamed H. Khalil

Abstract:

Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.

Keywords: GIS Web-Based, base-map, water network, decision support system

Procedia PDF Downloads 98
1226 Overview of Cage Aquaculture Practices, Benefits and Challenges on Africa Waters Bodies

Authors: Mekonen Hailu, Liu Liping

Abstract:

Cage aquaculture is highly preferred due to higher production per unit volume of water, lower costs of investment, and simpler routine farm management procedures compared to pond systems. In the 1980s, cage culture was first used on a trial basis in sub-Saharan Africa. Over the past 20 years, a small number of prosperous freshwater cage culture operations have started to emerge in Egypt, Rwanda, Kenya, Uganda, Tanzania, Ghana, Malawi, Zambia and Zimbabwe. Brackish and marine cage culture also offers a lot of potential, although this subsector hasn't seen any significant commercial growth to date. In 2019, 263 cage aquaculture installations on the African inland waters on 18 water bodies within eight countries with an estimated 20,114 cages were reported. The lakes Victoria, Kariba, Volta, and River Volta, which together account for 82.9% of all cage aquaculture installations regarded as sub-Saharan Africa's principal cage aquaculture regions (Fig 1). Except few small-scale trials with North African catfish (Clarias gariepinus), almost all farms in Sub-Saharan Africa and Egypt grow Nile tilapia (Oreochromis niloticus). More than 247,398 tonnes of fish are produced yearly from ten African countries through cage aquaculture. The expansion of cage culture in Africa provides job opportunities for both skilled and unskilled workers, nutritious food and foreign currency. The escaping non-native strains of tilapia in Lake Volta and the occurrence of a risky Tilapia lake virus (syncytial hepatitis), which has the potential to wipe out entire populations in both wild and farmed Nile tilapia on Lake Victoria, are threats coming with the expansion of cage aquaculture in Africa. In addition, the installations of 138 cage aquacultures were found in contrary to best cage culture practices. To sustain cage aquaculture development and maintain harmony with other water uses, developers must strictly abide by best practices. Hence, the exclusion of protected areas and small lakes (average depth 5 m or less) should be done, as well an Environmental Impact Assessment should be conducted before establishing the cage farms.

Keywords: Africa, cage aquaculture, production, threats

Procedia PDF Downloads 74
1225 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method

Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik

Abstract:

The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.

Keywords: contaminants, fish, pesticides residues, QuEChERS method

Procedia PDF Downloads 220
1224 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise

Authors: Rahman Davtalab

Abstract:

Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.

Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise

Procedia PDF Downloads 187
1223 Production of High Purity Cellulose Products from Sawdust Waste Material

Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole

Abstract:

Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.

Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp

Procedia PDF Downloads 188
1222 Household Earthquake Absorptive Capacity Impact on Food Security: A Case Study in Rural Costa Rica

Authors: Laura Rodríguez Amaya

Abstract:

The impact of natural disasters on food security can be devastating, especially in rural settings where livelihoods are closely tied to their productive assets. In hazards studies, absorptive capacity is seen as a threshold that impacts the degree of people’s recovery after a natural disaster. Increasing our understanding of households’ capacity to absorb natural disaster shocks can provide the international community with viable measurements for assessing at-risk communities’ resilience to food insecurities. The purpose of this study is to identify the most important factors in determining a household’s capacity to absorb the impact of a natural disaster. This is an empirical study conducted in six communities in Costa Rica affected by earthquakes. The Earthquake Impact Index was developed for the selection of the communities in this study. The households coded as total loss in the selected communities constituted the sampling frame from which the sample population was drawn. Because of the study area geographically dispersion over a large surface, the stratified clustered sampling hybrid technique was selected. Of the 302 households identified as total loss in the six communities, a total of 126 households were surveyed, constituting 42 percent of the sampling frame. A list of indicators compiled based on theoretical and exploratory grounds for the absorptive capacity construct served to guide the survey development. These indicators were included in the following variables: (1) use of informal safety nets, (2) Coping Strategy, (3) Physical Connectivity, and (4) Infrastructure Damage. A multivariate data analysis was conducted using Statistical Package for Social Sciences (SPSS). The results show that informal safety nets such as family and friends assistance exerted the greatest influence on the ability of households to absorb the impact of earthquakes. In conclusion, communities that experienced the highest environmental impact and human loss got disconnected from the social networks needed to absorb the shock’s impact. This resulted in higher levels of household food insecurity.

Keywords: absorptive capacity, earthquake, food security, rural

Procedia PDF Downloads 256
1221 Evaluation of Different Liquid Scintillation Counting Methods for 222Rn Determination in Waters

Authors: Jovana Nikolov, Natasa Todorovic, Ivana Stojkovic

Abstract:

Monitoring of 222Rn in drinking or surface waters, as well as in groundwater has been performed in connection with geological, hydrogeological and hydrological surveys and health hazard studies. Liquid scintillation counting (LSC) is often preferred analytical method for 222Rn measurements in waters because it allows multiple-sample automatic analysis. LSC method implies mixing of water samples with organic scintillation cocktail, which triggers radon diffusion from the aqueous into organic phase for which it has a much greater affinity, eliminating possibility of radon emanation in that manner. Two direct LSC methods that assume different sample composition have been presented, optimized and evaluated in this study. One-phase method assumed direct mixing of 10 ml sample with 10 ml of emulsifying cocktail (Ultima Gold AB scintillation cocktail is used). Two-phase method involved usage of water-immiscible cocktails (in this study High Efficiency Mineral Oil Scintillator, Opti-Fluor O and Ultima Gold F are used). Calibration samples were prepared with aqueous 226Ra standard in glass 20 ml vials and counted on ultra-low background spectrometer Quantulus 1220TM equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with 226Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide reliable and precise spectra separation. Consequentially, calibration procedure was done through investigation of PSA discriminator level influence on 222Rn efficiency detection, using 226Ra calibration standard in wide range of activity concentrations. Evaluation of presented methods was based on obtained efficiency detections and achieved Minimal Detectable Activity (MDA). Comparison of presented methods, accuracy and precision as well as different scintillation cocktail’s performance was considered from results of measurements of 226Ra spiked water samples with known activity and environmental samples.

Keywords: 222Rn in water, Quantulus1220TM, scintillation cocktail, PSA parameter

Procedia PDF Downloads 201
1220 Enhancing Wayfinding and User Experience in Hospital Environments: A Study of University Medical Centre Ljubljana

Authors: Nastja Utrosa, Matevz Juvancic

Abstract:

Hospital buildings are complex public environments characterized by intricate functional arrangements and architectural layouts. Effective wayfinding is essential for patients, visitors, students, and staff. However, spatial orientation planning is often overlooked until after construction. While these environments meet functional needs, they frequently neglect the psychological aspects of user experience. This study investigates wayfinding within complex urban healthcare environments, focusing on the influences of spatial design, spatial cognition, and user experience. The inherent complexity of these environments, with extensive spatial dimensions and dispersed buildings, exacerbates the problem. Gradual expansions and additions contribute to disorientation and navigational difficulties for users. Effective route guidance in urban healthcare settings has become increasingly crucial. However, research on the environmental elements that influence wayfinding in such environments remains limited. To address this gap, we conducted a study at the University Medical Centre Ljubljana (UMCL), Slovenia's largest university hospital. Using a questionnaire, we assessed how individuals' perceptions and use of outdoor hospital spaces with a diverse sample (n=179). We evaluated the area’s usability by analyzing visit frequency, stops, modes of arrival, and parking patterns and examined the visitors' age distribution. Additionally, we investigated spatial aids and the use of color as an orientation element at three specific locations within the medical center. Our study explored the impact of color on entrance selection and the effectiveness of warm versus cool colors for wayfinding. Our findings highlight the significance of graphic adjustments in shaping perceptions of hospital outdoor spaces. Most participants preferred visually organized entrances, underscoring the importance of effective visual communication. Implementing these adaptations can substantially enhance the user experience, reducing stress and increasing satisfaction in hospital environments.

Keywords: hospital layout design, healthcare facilities, wayfinding, navigational aids, spatial orientation, color, signage

Procedia PDF Downloads 48
1219 Adaptive Strategies to Nutrient Deficiency of Doubled Diploid Citrumelo 4475: A Prospective Study Based on Structural, Ultrastructural, Physiological and Biochemical Parameters

Authors: J. Oustric, L. Berti, J. Santini

Abstract:

Nowadays, the objective of durable agriculture, and in particular organic agriculture, is to reduce the level of fertilizer inputs used in crops. Limiting the quantity of fertilizer inputs would optimize the economical result and minimizing the environmental impact. Nutrient deficiency, particularly of a major nutrient (N, P, and K), can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations. In citrus crop, scion/rootstock combinations are used frequently to improve tolerance to various abiotic stresses. New rootstocks are needed to respond to these constraints, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. The aim of this work was to determine whether a better tolerance to nutrient deficiency could be observed in a doubled diploid seedling and whether this tolerance could be observed in common clementine scion if used as rootstocks. We selected diploid (CM2x) and doubled diploid (CM4x) Citrumelo 4475 seedlings and common clementine (C) grafted onto Citrumelo 4475 diploid (C/CM2x) and doubled diploid (C/CM4x) rootstocks. Nutrient deficiency effects on the seedlings and scion/rootstock combinations were analyzed by studying anatomical, structural and ultrastructural determinants (chlorosis, stomata, ostiole and cells and their organelles), photosynthetic properties (leaf net photosynthetic rate (Pₙₑₜ), stomatal conductance (gₛ), chlorophyll a fluorescence (Fᵥ/Fₘ)) and oxidative marker (malondialdehyde). Nutrient deficiency affected differently foliar tissues, physiological parameters, and oxidative metabolism in leaves of seedlings depending on their ploidy level and of common clementine scion depending on their rootstocks ploidy level. Both CM4x and C/CM4x presented lower foliar damages (chlorosis, chloroplasts, mitochondria, and plastoglobuli), photosynthesis processes alteration (Pₙₑₜ, gₛ, and Fᵥ/Fₘ), and malondialdehyde accumulation than CM2x and C/CM2x after nutrient deficiency. Doubled diploid Citrumelo 4475 can improve nutrient deficiency tolerance, and its use as a rootstock allows to confer this tolerance to the common clementine scion.

Keywords: nutrient deficiency, oxidative stress, photosynthesis, polyploid rootstocks

Procedia PDF Downloads 131
1218 A Hedonic Valuation Approach to Valuing Combined Sewer Overflow Reductions

Authors: Matt S. Van Deren, Michael Papenfus

Abstract:

Seattle is one of the hundreds of cities in the United States that relies on a combined sewer system to collect and convey municipal wastewater. By design, these systems convey all wastewater, including industrial and commercial wastewater, human sewage, and stormwater runoff, through a single network of pipes. Serious problems arise for combined sewer systems during heavy precipitation events when treatment plants and storage facilities are unable to accommodate the influx of wastewater needing treatment, causing the sewer system to overflow into local waterways through sewer outfalls. CSOs (Combined Sewer Overflows) pose a serious threat to human and environmental health. Principal pollutants found in CSO discharge include microbial pathogens, comprising of bacteria, viruses, parasites, oxygen-depleting substances, suspended solids, chemicals or chemical mixtures, and excess nutrients, primarily nitrogen and phosphorus. While concentrations of these pollutants can vary between overflow events, CSOs have the potential to spread disease and waterborne illnesses, contaminate drinking water supplies, disrupt aquatic life, and effect a waterbody’s designated use. This paper estimates the economic impact of CSOs on residential property values. Using residential property sales data from Seattle, Washington, this paper employs a hedonic valuation model that controls for housing and neighborhood characteristics, as well as spatial and temporal effects, to predict a consumer’s willingness to pay for improved water quality near their homes. Initial results indicate that a 100,000-gallon decrease in the average annual overflow discharged from a sewer outfall within 300 meters of a home is associated with a 0.053% increase in the property’s sale price. For the average home in the sample, the price increase is estimated to be $18,860.23. These findings reveal some of the important economic benefits of improving water quality by reducing the frequency and severity of combined sewer overflows.

Keywords: benefits, hedonic, Seattle, sewer

Procedia PDF Downloads 178
1217 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 154
1216 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 66
1215 Assessment of Vehicular Emission and Its Impact on Urban Air Quality

Authors: Syed Imran Hussain Shah

Abstract:

Air pollution rapidly impacts the Earth's climate and environmental quality, causing public health nuisances and cardio-pulmonary illnesses. Air pollution is a global issue, and all population groups in all the regions in the developed and developing parts of the world were affected by it. The promise of a reduction in deaths and diseases as per SDG No. 3 is an international commitment towards sustainable development. In that context, assessing and evaluating the ambient air quality is paramount. This article estimates the air pollution released by the vehicles on roads of Lahore, a mega city having 13.98 million populations. A survey was conducted on different fuel stations to determine the estimated fuel pumped to different types of vehicles from different fuel stations. The number of fuel stations in Lahore is around 350. Another survey was also conducted to interview the drivers to know the per-litre fuel consumption of other vehicles. Therefore, a survey was conducted on 189 fuel stations and 400 drivers using a combination of random sampling and convenience sampling methods. The sampling was done in a manner to cover all areas of the city including central commercial hubs, modern housing societies, industrial zones, main highways, old traditional population centres, etc. Mathematical equations were also used to estimate the emissions from different modes of vehicles. Due to the increase in population, the number of vehicles is increasing, and consequently, traffic emissions were rising at a higher level. Motorcycles, auto rickshaws, motor cars, and vans were the main contributors to Carbon dioxide and vehicular emissions in the air. It has been observed that vehicles that use petrol fuel produce more Carbon dioxide emissions in the air. Buses and trucks were the main contributors to NOx in the air due to the use of diesel fuel. Whereas vans, buses, and trucks produce the maximum amount of SO2. PM10 and PM2.5 were mainly produced by motorcycles and motorcycle two-stroke rickshaws. Auto rickshaws and motor cars mainly produce benzene emissions. This study may act as a major tool for traffic and vehicle policy decisions to promote better fuel quality and more fuel-efficient vehicles to reduce emissions.

Keywords: particulate matter, nitrogen dioxide, climate change, pollution control

Procedia PDF Downloads 15
1214 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation

Authors: Zhaoyang Liu

Abstract:

It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.

Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions

Procedia PDF Downloads 174
1213 Multimodality in Storefront Windows: The Impact of Verbo-Visual Design on Consumer Behavior

Authors: Angela Bargenda, Erhard Lick, Dhoha Trabelsi

Abstract:

Research in retailing has identified the importance of atmospherics as an essential element in enhancing store image, store patronage intentions, and the overall shopping experience in a retail environment. However, in the area of atmospherics, store window design, which represents an essential component of external store atmospherics, remains a vastly underrepresented phenomenon in extant scholarship. This paper seeks to fill this gap by exploring the relevance of store window design as an atmospheric tool. In particular, empirical evidence of theme-based theatrical store front windows, which put emphasis on the use of verbo-visual design elements, was found in Paris and New York. The purpose of this study was to identify to what extent such multimodal window designs of high-end department stores in metropolitan cities have an impact on store entry decisions and attitudes towards the retailer’s image. As theoretical construct, the linguistic concept of multimodality and Mehrabian’s and Russell’s model in environmental psychology were applied. To answer the research question, two studies were conducted. For Study 1 a case study approach was selected to define three different types of store window designs based on different types of visual-verbal relations. Each of these types of store window design represented a different level of cognitive elaboration required for the decoding process. Study 2 consisted of an on-line survey carried out among more than 300 respondents to examine the influence of these three types of store window design on the consumer behavioral variables mentioned above. The results of this study show that the higher the cognitive elaboration needed to decode the message of the store window, the lower the store entry propensity. In contrast, the higher the cognitive elaboration, the higher the perceived image of the retailer’s image. One important conclusion is that in order to increase consumers’ propensity to enter stores with theme-based theatrical store front windows, retailers need to limit the cognitive elaboration required to decode their verbo-visual window design.

Keywords: consumer behavior, multimodality, store atmospherics, store window design

Procedia PDF Downloads 203
1212 Fabric Softener Deposition on Cellulose Nanocrystals and Cotton Fibers

Authors: Evdokia K. Oikonomou, Nikolay Christov, Galder Cristobal, Graziana Messina, Giovani Marletta, Laurent Heux, Jean-Francois Berret

Abstract:

Fabric softeners are aqueous formulations that contain ~10 wt. % double tailed cationic surfactants. Here, a formulation in which 50% surfactant was replaced with low quantities of natural guar polymers was developed. Thanks to the reduced surfactant quantity this product has less environmental impact while the guars presence was found to maintain the product’s performance. The objective of this work is to elucidate the effect of the guar polymers on the softener deposition and the adsorption mechanism on the cotton surface. The surfactants in these formulations are assembled into large distributed (0.1 – 1 µm) vesicles that are stable in the presence of guars and upon dilution. The effect of guars on the vesicles adsorption on cotton was first estimated by using cellulose nanocrystals (CNC) as a stand-in for cotton. The dispersion of CNC in water permits to follow the interaction between the vesicles, guars, and CNC in the bulk. It was found that guars enhance the deposition on CNC and that the vesicles are deposited intactly on the fibers driven by electrostatics. The mechanism of the vesicles/guars adsorption on cellulose fibers was identified by quartz crystal microbalance with dissipation monitoring. It was found that the guars increase the surfactant deposited quantity, in agreement with the results in the bulk. Also, the structure of the adsorbed surfactant on the fibers' surfaces (vesicle or bilayer) was influenced by the guars presence. Deposition studies on cotton fabrics were also conducted. Attenuated total reflection and scanning electron microscopy were used to study the effect of the polymers on this deposition. Finally, fluorescent microscopy was used to follow the adsorption of surfactant vesicles, labeled with a fluorescent dye, on cotton fabrics in water. It was found that, in the presence or not of polymers, the surfactant vesicles are adsorbed on fiber maintaining their vesicular structure in water (supported vesicular bilayer structure). The guars influence this process. However, upon drying the vesicles are transformed into bilayers and eventually wrap the fibers (supported lipid bilayer structure). This mechanism is proposed for the adsorption of vesicular conditioner on cotton fiber and can be affected by the presence of polymers.

Keywords: cellulose nanocrystals, cotton fibers, fabric softeners, guar polymers, surfactant vesicles

Procedia PDF Downloads 181