Search results for: small and middle enterprises
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6759

Search results for: small and middle enterprises

1239 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 87
1238 The Role of Group Dynamics in Creativity: A Study Case from Italy

Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo

Abstract:

Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.

Keywords: group dynamics, creative thinking, creative action, social interactions, group play

Procedia PDF Downloads 127
1237 Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor

Authors: Manish Chand, Subhrojit Bagchi, R. Kumar

Abstract:

A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization.

Keywords: neutron flux, neutron activation analysis, neutron flux shape factor, MCNP, Monte Carlo N-Particle Code

Procedia PDF Downloads 164
1236 Organic Thin-Film Transistors with High Thermal Stability

Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk

Abstract:

Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.

Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology

Procedia PDF Downloads 349
1235 Autoimmune Diseases Associated with Celiac Disease in Adults

Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia

Abstract:

Introduction: Celiac disease (CD) is an immune-mediated small intestinal disorder that occurs in genetically susceptible people. It is significantly associated with other autoimmune disorders represented mainly by type 1 diabetes and autoimmune dysthyroidism. The aim of our study is to determine the prevalence and the type of the various autoimmune diseases associated with CD in adult patients. Material and methods: This is a retrospective study including patients diagnosed with CD, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and January 2016. The diagnosis of CD was confirmed by serological tests and duodenal biopsy. The screening of autoimmune diseases was based on physical examination, biological and serological tests. Results: Sixty five patients with a female predominance were included, 48women (73.8%) and 17 men (26.2%). The mean age was 31.8 years (17-75). A family history of CD or other autoimmune diseases was present in 5 and 10 patients respectively. Clinical presentation of CD was made by recurrent abdominal pain in 49 cases, diarrhea in 29 cases, bloating in 17 cases, constipation in 25 cases and vomiting in 8 cases. Autoimmune diseases associated with CD were found in 30 cases (46.1%): type 1 diabetes in 15 patients attested by the positivity of anti-GAD antibodies in 11 cases and anti-IA2 in 4 cases, Hashimoto thyroiditis in 8 cases confirmed by the positivity of anti-TPO antibodies, Addison's disease in 2 patients, Anemia of Biermer in 2 patients, autoimmune hepatitis, Systemic erythematosus lupus, Gougerot Sjögren syndrome, rheumatoid arthritis, Vitiligo and antiphospholipid syndrome in one patient each. CD was associated with more than one autoimmune disease defining multiple autoimmune syndrome in 2 female patients. The first patient had Basedow disease, Addison disease and type 1 diabetes. The second patient had systemic erythematosus lupus and Gougerot Sjögren syndrome. Conclusion: In our study autoimmune diseases were associated with CD in 46.1% of cases and were dominated by diabetes and dysthroidism. After establishing the diagnosis of CD the search of associated autoimmune diseases is necessary in order to avoid any therapeutic delay which can alter the prognosis of the patient.

Keywords: association, autoimmune thyroiditis, celiac disease, diabetes

Procedia PDF Downloads 283
1234 The Emerging Multi-Species Trap Fishery in the Red Sea Waters of Saudi Arabia

Authors: Nabeel M. Alikunhi, Zenon B. Batang, Aymen Charef, Abdulaziz M. Al-Suwailem

Abstract:

Saudi Arabia has a long history of using traps as a traditional fishing gear for catching commercially important demersal, mainly coral reef-associated fish species. Fish traps constitute the dominant small-scale fisheries in Saudi waters of Arabian Gulf (eastern seaboard of Saudi Arabia). Recently, however, traps have been increasingly used along the Saudi Red Sea coast (western seaboard), with a coastline of 1800 km (71%) compared to only 720 km (29%) in the Saudi Gulf region. The production trend for traps indicates a recent increase in catches and percent contribution to traditional fishery landings, thus ascertaining the rapid proliferation of trap fishing along the Saudi Red Sea coast. Reef-associated fish species, mainly groupers (Serranidae), emperors (Lethrinidae), parrotfishes (Scaridae), scads and trevallies (Carangidae), and snappers (Lutjanidae), dominate the trap catches, reflecting the reef-dominated shelf zone in the Red Sea. This ongoing investigation covers following major objectives (i) Baseline studies to characterize trap fishery through landing site visit and interview surveys (ii) Stock assessment by fisheries and biological data obtained through monthly landing site monitoring using fishery operational model by FLBEIA, (iii) Operational impacts, derelict traps assessment and by-catch analysis through bottom-mounted video camera and onboard monitoring (iv) Elucidation of fishing grounds and derelict traps impacts by onboard monitoring, Remotely Operated underwater Vehicle and Autonomous Underwater Vehicle surveys; and (v) Analysis of gear design and operations which covers colonization and deterioration experiments. The progress of this investigation on the impacts of the trap fishery on fish stocks and the marine environment in the Saudi Red Sea region is presented.

Keywords: red sea, Saudi Arabia, fish trap, stock assessment, environmental impacts

Procedia PDF Downloads 350
1233 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure

Authors: Adriano Losso, Birgit Dämon, Stefan Mayr

Abstract:

In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.

Keywords: conifers, Picea abies, Pinus mugo, timberline

Procedia PDF Downloads 294
1232 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products

Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis

Abstract:

Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.

Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue

Procedia PDF Downloads 407
1231 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 77
1230 Culture of Human Mesenchymal Stem Cells Culture in Xeno-Free Serum-Free Culture Conditions on Laminin-521

Authors: Halima Albalushi, Mohadese Boroojerdi, Murtadha Alkhabori

Abstract:

Introduction: Maintenance of stem cell properties during culture necessitates the recreation of the natural cell niche. Studies reported the promising outcome of mesenchymal stem cells (MSC) properties maintenance after using extracellular matrix such as CELLstart™, which is the recommended coating material for stem cells cultured in serum-free and xeno-free conditions. Laminin-521 is known as a crucial adhesion protein, which is found in natural stem cell niche, and plays an important role in facilitating the maintenance of self-renewal, pluripotency, standard morphology, and karyotype of human pluripotent stem cells (PSCs). The aim of this study is to investigate the effects of Laminin-521 on human umbilical cord-derived mesenchymal stem cells (UC-MSC) characteristics as a step toward clinical application. Methods: Human MSC were isolated from the umbilical cord via the explant method. Umbilical cord-derived-MSC were cultured in serum-free and xeno-free conditions in the presence of Laminin-521 for six passages. Cultured cells were evaluated by morphology and expansion index for each passage. Phenotypic characterization of UC-MSCs cultured on Laminin-521 was evaluated by assessment of cell surface markers. Results: Umbilical cord derived-MSCs formed small colonies and expanded as a homogeneous monolayer when cultured on Laminin-521. Umbilical cord derived-MSCs reached confluence after 4 days in culture. No statistically significant difference was detected in all passages when comparing the expansion index of UC-MSCs cultured on LN-521 and CELLstart™. Phenotypic characterization of UC-MSCs cultured on LN-521 using flow cytometry revealed positive expression of CD73, CD90, CD105 and negative expression of CD34, CD45, CD19, CD14 and HLA-DR.Conclusion: Laminin-521 is comparable to CELLstart™ in supporting UC-MSCs expansion and maintaining their characteristics during culture in xeno-free and serum-free culture conditions.

Keywords: mesenchymal stem cells, culture, laminin-521, xeno-free serum-free

Procedia PDF Downloads 74
1229 Working Memory Capacity and Motivation in Japanese English as a Foreign Language Learners' Speaking Skills

Authors: Akiko Kondo

Abstract:

Although the effects of working memory capacity on second/foreign language speaking skills have been researched in depth, few studies have focused on Japanese English as a foreign language (EFL) learners as compared to other languages (Indo-European languages), and the sample sizes of the relevant Japanese studies have been relatively small. Furthermore, comparing the effects of working memory capacity and motivation which is another kind of frequently researched individual factor on L2 speaking skills would add to the scholarly literature in the field of second language acquisition research. Therefore, the purposes of this study were to investigate whether working memory capacity and motivation have significant relationships with Japanese EFL learners’ speaking skills and to investigate the degree to which working memory capacity and motivation contribute to their English speaking skills. One-hundred and ten Japanese EFL students aged 18 to 26 years participated in this study. All of them are native Japanese speakers and have learned English as s foreign language for 6 to 15. They completed the Versant English speaking test, which has been widely used to measure non-native speakers’ English speaking skills, two types of working memory tests (the L1-based backward digit span test and the L1-based listening span test), and the language learning motivation survey. The researcher designed the working memory tests and the motivation survey. To investigate the relationship between the variables (English speaking skills, working memory capacity, and language learning motivation), a correlation analysis was conducted, which showed that L2 speaking test scores were significantly related to both working memory capacity and language learning motivation, although the correlation coefficients were weak. Furthermore, a multiple regression analysis was performed, with L2 speaking skills as the dependent variable and working memory capacity and language learning motivation as the independent variables. The results showed that working memory capacity and motivation significantly explained the variance in L2 speaking skills and that the L2 motivation had slightly larger effects on the L2 speaking skills than the working memory capacity. Although this study includes several limitations, the results could contribute to the generalization of the effects of individual differences, such as working memory and motivation on L2 learning, in the literature.

Keywords: individual differences, motivation, speaking skills, working memory

Procedia PDF Downloads 164
1228 Computer Simulation Approach in the 3D Printing Operations of Surimi Paste

Authors: Timilehin Martins Oyinloye, Won Byong Yoon

Abstract:

Simulation technology is being adopted in many industries, with research focusing on the development of new ways in which technology becomes embedded within production, services, and society in general. 3D printing (3DP) technology is fast developing in the food industry. However, the limited processability of high-performance material restricts the robustness of the process in some cases. Significantly, the printability of materials becomes the foundation for extrusion-based 3DP, with residual stress being a major challenge in the printing of complex geometry. In many situations, the trial-a-error method is being used to determine the optimum printing condition, which results in time and resource wastage. In this report, the analysis of 3 moisture levels for surimi paste was investigated for an optimum 3DP material and printing conditions by probing its rheology, flow characteristics in the nozzle, and post-deposition process using the finite element method (FEM) model. Rheological tests revealed that surimi pastes with 82% moisture are suitable for 3DP. According to the FEM model, decreasing the nozzle diameter from 1.2 mm to 0.6 mm, increased the die swell from 9.8% to 14.1%. The die swell ratio increased due to an increase in the pressure gradient (1.15107 Pa to 7.80107 Pa) at the nozzle exit. The nozzle diameter influenced the fluid properties, i.e., the shear rate, velocity, and pressure in the flow field, as well as the residual stress and the deformation of the printed sample, according to FEM simulation. The post-printing stability of the model was investigated using the additive layer manufacturing (ALM) model. The ALM simulation revealed that the residual stress and total deformation of the sample were dependent on the nozzle diameter. A small nozzle diameter (0.6 mm) resulted in a greater total deformation (0.023), particularly at the top part of the model, which eventually resulted in the sample collapsing. As the nozzle diameter increased, the accuracy of the model improved until the optimum nozzle size (1.0 mm). Validation with 3D-printed surimi products confirmed that the nozzle diameter was a key parameter affecting the geometry accuracy of 3DP of surimi paste.

Keywords: 3D printing, deformation analysis, die swell, numerical simulation, surimi paste

Procedia PDF Downloads 68
1227 Traumatic Brain Injury Neurosurgical Care Continuum Delays in Mulago Hospital in Kampala Uganda

Authors: Silvia D. Vaca, Benjamin J. Kuo, Joao Ricardo Nickenig Vissoci, Catherine A. Staton, Linda W. Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: Patients with traumatic brain injury (TBI) can develop rapid neurological deterioration from swelling and intracranial hematomas, which can result in focal tissue ischemia, brain compression, and herniation. Moreover, delays in management increase the risk of secondary brain injury from hypoxemia and hypotension. Therefore, in TBI patients with subdural hematomas (SDHs) and epidural hematomas (EDHs), surgical intervention is both necessary and time sensitive. Significant delays are seen along the care continuum in low- and middle-income countries (LMICs) largely due to limited healthcare capacity to address the disproportional rates of TBI in Sub Saharan Africa (SSA). While many LMICs have subsidized systems to offset surgical costs, the burden of securing funds by the patients for medications, supplies, and CT diagnostics poses a significant challenge to timely surgical interventions. In Kampala Uganda, the challenge of obtaining timely CT scans is twofold: logistical and financial barriers. These bottlenecks contribute significantly to the care continuum delays and are associated with poor TBI outcomes. Objective: The objectives of this study are to 1) describe the temporal delays through a modified three delays model that fits the context of neurosurgical interventions for TBI patients in Kampala and 2) investigate the association between delays and mortality. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Four time intervals were constructed along five time points: injury, hospital arrival, neurosurgical evaluation, CT results, and definitive surgery. Time interval differences among mild, moderate and severe TBI and their association with mortality were analyzed. Results: The mortality rate of all TBI patients presenting to MNRH was 9.6%, which ranged from 4.7% for mild and moderate TBI patients receiving surgery to 81.8% for severe TBI patients who failed to receive surgery. The duration from injury to surgery varied considerably across TBI severity with the largest gap seen between mild TBI (174 hours) and severe TBI (69 hours) patients. Further analysis revealed care continuum differences for interval 3 (neurosurgical evaluation to CT result) and 4 (CT result to surgery) between severe TBI patients (7 hours for interval 3 and 24 hours for interval 4) and mild TBI patients (19 hours for interval 3, and 96 hours for interval 4). These post-arrival delays were associated with mortality for mild (p=0.05) and moderate TBI (p=0.03) patients. Conclusions: To our knowledge, this is the first analysis using a modified 'three delays' framework to analyze the care continuum of TBI patients in Uganda from injury to surgery. We found significant associations between delays and mortality for mild and moderate TBI patients. As it currently stands, poorer outcomes were observed for these mild and moderate TBI patients who were managed non-operatively or failed to receive surgery while surgical services were shunted to more severely ill patients. While well intentioned, high mortality rates were still observed for the severe TBI patients managed surgically. These results suggest the need for future research to optimize triage practices, understand delay contributors, and improve pre-hospital logistical referral systems.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, traumatic brain injury

Procedia PDF Downloads 220
1226 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran

Authors: Mahyar Mehrafarin, Reza Mehrafarin

Abstract:

The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.

Keywords: archaeological surveys, computer use, iran, modern technologies, sistan

Procedia PDF Downloads 78
1225 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, marketing management

Procedia PDF Downloads 234
1224 Brachypodium: A Model Genus to Study Grass Genome Organisation at the Cytomolecular Level

Authors: R. Hasterok, A. Betekhtin, N. Borowska, A. Braszewska-Zalewska, E. Breda, K. Chwialkowska, R. Gorkiewicz, D. Idziak, J. Kwasniewska, M. Kwasniewski, D. Siwinska, A. Wiszynska, E. Wolny

Abstract:

In contrast to animals, the organisation of plant genomes at the cytomolecular level is still relatively poorly studied and understood. However, the Brachypodium genus in general and B. distachyon in particular represent exceptionally good model systems for such study. This is due not only to their highly desirable ‘model’ biological features, such as small nuclear genome, low chromosome number and complex phylogenetic relations, but also to the rapidly and continuously growing repertoire of experimental tools, such as large collections of accessions, WGS information, large insert (BAC) libraries of genomic DNA, etc. Advanced cytomolecular techniques, such as fluorescence in situ hybridisation (FISH) with evermore sophisticated probes, empowered by cutting-edge microscope and digital image acquisition and processing systems, offer unprecedented insight into chromatin organisation at various phases of the cell cycle. A good example is chromosome painting which uses pools of chromosome-specific BAC clones, and enables the tracking of individual chromosomes not only during cell division but also during interphase. This presentation outlines the present status of molecular cytogenetic analyses of plant genome structure, dynamics and evolution using B. distachyon and some of its relatives. The current projects focus on important scientific questions, such as: What mechanisms shape the karyotypes? Is the distribution of individual chromosomes within an interphase nucleus determined? Are there hot spots of structural rearrangement in Brachypodium chromosomes? Which epigenetic processes play a crucial role in B. distachyon embryo development and selective silencing of rRNA genes in Brachypodium allopolyploids? The authors acknowledge financial support from the Polish National Science Centre (grants no. 2012/04/A/NZ3/00572 and 2011/01/B/NZ3/00177)

Keywords: Brachypodium, B. distachyon, chromosome, FISH, molecular cytogenetics, nucleus, plant genome organisation

Procedia PDF Downloads 351
1223 Reducing Tobacco Consumption in a Rural Village of Sri Lanka Though a Community Based Health Promotion Intervention

Authors: B. A. N. Madubashini, S. Anojan, S. Thurka, N. M. C. J. Nawasinghe, G. A. S. Milanga, W. M. I. S. Weerakoon, I. D. N. Ihalahewage

Abstract:

Evidence-based health promotional approaches are known to be successful ways of reducing tobacco consumption in a rural village. Hence tobacco prevention is essential in improving lives of people, and community-based approaches are considered as effective. This community-based health promotion intervention implemented to reduce high consumption of tobacco in a rural area in Sri Lanka. This intervention was conducted in a rural village of Sri Lanka. In the beginning, facilitation discussions conducted with community members to identify determinants leading to tobacco consumption among villagers. Intervention was planed based on those determinants. Community actions through small active groups to demote smoking were generated. Children groups displayed cigarette buds collected around common places such as temple to community gatherings including funeral welfare society elaborating the cost and the money spent on cigarettes. A till (expenditure box) was introduced, and smokers in family were encouraged to put money on a cigarette to it when they decide to smoke instead. This way they could monitor potential savings if quit. Children groups introduced a tool 'Engalanthe puthata (for overseas son)' to shops. Shop owners agreed to add a pebble to a box whenever they sell a cigarette. The money spent on cigarettes in that shop was calculated regularly, and that was considered as money sent to tobacco company overseas, so to the son of the company owner. This was useful to encourage quitting and to stop selling cigarette in the shops. All four shops in the community volunteered to stop selling cigarettes. Eleven percent of users quitted smoking and 37% users reduced smoking. Child empowerment was high, and 60% of children had shown their disapproval on smoking publicly at least once. Similar community-based health promotion intervention can be used to generate community actions leading to reduction of tobacco consumption.

Keywords: cigarette, community, empowerment, health promotion, intervention

Procedia PDF Downloads 229
1222 Documenting the 15th Century Prints with RTI

Authors: Peter Fornaro, Lothar Schmitt

Abstract:

The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.

Keywords: art history, computational photography, paste prints, reflectance transformation imaging

Procedia PDF Downloads 275
1221 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction

Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez

Abstract:

Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.

Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis

Procedia PDF Downloads 181
1220 Investigating the Antimicrobial Activity of Essential Oil Derived from Pistacia atlantica Gum against Extensively Drug-Resistant Gram-Negative Acinetobacter baumannii

Authors: Zhala Ahmad, Zainab Lazim, Haider Hamzah

Abstract:

Bacterial resistance is a pressing global health issue, with multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) strains to pose a serious threat. In this context, researchers are investigating effective, safe, and affordable metabolites to combat these pathogens. This study focuses on gum essential oil (GEO) extracted from Pistacia atlantica and its activity and the mechanism of action against XDR Gram-negative Acinetobacter baumannii. GEO was extracted by hydrodistillation and analyzed using GC-MS. Eleven A. baumannii isolates were collected from the ward environment of Burn and Plastic Surgery Hospital in Al Sulaymaniyah City, Iraq. They were identified using the VITEK 2 system, 16S rRNA gene, and confirmed with the blaₒₓₐ₋₅₁ gene; A. baumannii ATCC 19606 was used as a reference strain. The isolates were identified as resistant to twelve different antibiotics spanning six distinct antibiotic classes while showing susceptibility to tetracycline and trimethoprim. Over 40 chemical constituents were detected in the gum's essential oils, with α-pinene being the most abundant. GEO was found to inhibit the growth of A. baumannii isolates; the minimum inhibitory concentration (MIC) of GEO was 2.5 µl/ml. GEO induced protein leakage, phosphate, and potassium ion efflux, distorted cell morphology, and cell death in the tested bacteria. GEO exhibited bacterial clearance and anti-adhesion activity using Band-Aids. This study's findings suggest that GEO could be used as a potential alternative treatment for infectious diseases caused by XRD pathogens, shedding further light on the importance of GEO in biomedical applications. Future studies must focus on generating clinically feasible sources of GEO for testing in small animal models before proceeding to human trials, ensuring safe and effective translation from the laboratory to the clinic.

Keywords: antibiotic resistance, Acinetobacter baumannii, essential oils, Pistacia atlantica, alpha-pinene

Procedia PDF Downloads 71
1219 Erectile Dysfunction in A Middle Aged Man 6 Years After Bariatric Surgery: A Case Report

Authors: Thaminda Liyanage, Chamila Shamika Kurukulasuriya

Abstract:

Introduction: Morbid obesity has been successfully treated with bariatric surgery for over 60 years. Although operative procedures have improved and associated complications have reduced substantially, surgery still carries the risk of post-operative malabsorption, malnutrition and a range of gastrointestinal disorders. Overweight by itself can impair libido in both sexes and cause erectile dysfunction in males by inducing a state of hypogonadotropic hypogonadism, proportional to the degree of obesity. Impact of weight reduction on libido and sexual activity remains controversial, however it is broadly accepted that weight loss improves sexual drive. Zinc deficiency, subsequent to malabsorption, may lead to impaired testosterone synthesis in men while excessive and/or rapid weight loss in females may result in reversible amenorrhoea leading to sub-fertility. Methods: We describe a 37 year old male, 6 years post Roux-en-Y gastric bypass surgery, who presented with erectile dysfunction, loss of libido, worsening fatigue and generalized weakness for 4 months. He also complained of constipation and frequent muscle cramps but denied having headache, vomiting or visual disturbances. Patient had lost 38 kg of body weight post gastric bypass surgery over four years {135kg (BMI 42.6 kg/m2) to 97 kg (BMI 30.6 kg/m2)} and the weight had been stable for past two years. He had no recognised co-morbidities at the time of the surgery and noted marked improvement in general wellbeing, physical fitness and psychological confident post surgery, up until four months before presentation. Clinical examination revealed dry pale skin with normal body hair distribution, no thyroid nodules or goitre, normal size testicles and normal neurological examination with no visual field defects or diplopia. He had low serum testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), T3, T4, thyroid stimulating hormone (TSH), insulin like growth factor 1 (IGF-1) and 24-hour urine cortisol levels. Serum cortisol demonstrated an appropriate rise to ACTH stimulation test but growth hormone (GH) failed increase on insulin tolerance test. Other biochemical and haematological studies were normal, except for low zinc and folate with minimally raised liver enzymes. MRI scan of the head confirmed a solid pituitary mass with no mass effect on optic chiasm. Results: In this patient clinical, biochemical and radiological findings were consistent with anterior pituitary dysfunction. However, there were no features of raised intracranial pressure or neurological compromise. He was commenced on appropriate home replacement therapy and referred for neurosurgical evaluation. Patient reported marked improvement in his symptoms, specially libido and erectile dysfunction, on subsequent follow up visits. Conclusion: Sexual dysfunction coupled with non specific constitutional symptoms has multiple aetiologies. Clinical symptoms out of proportion to nutritional deficiencies post bariatric surgery should be thoroughly investigated. Close long term follow up is crucial for overall success.

Keywords: obesity, bariatric surgery, erectile dysfunction, loss of libido

Procedia PDF Downloads 283
1218 Two Houses in the Arabian Desert: Assessing the Built Work of RCR Architects in the UAE

Authors: Igor Peraza Curiel, Suzanne Strum

Abstract:

Today, when many foreign architects are receiving commissions in the United Arab Emirates, it is essential to analyze how their designs are influenced by the region's culture, environment, and building traditions. This study examines the approach to siting, geometry, construction methods, and material choices in two private homes for a family in Dubai, a project being constructed on adjacent sites by the acclaimed Spanish team of RCR Architects. Their third project in Dubai, the houses mark a turning point in their design approach to the desert. The Pritzker Prize-winning architects of RCR gained renown for building works deeply responsive to the history, landscape, and customs of their hometown in a volcanic area of the Catalonia region of Spain. Key formative projects and their entry to practice in UAE will be analyzed according to the concepts of place identity, the poetics of construction, and material imagination. The poetics of construction, a theoretical position with a long practical tradition, was revived by the British critic Kenneth Frampton. The idea of architecture as a constructional craft is related to the concepts of material imagination and place identity--phenomenological concerns with the creative engagement with local matter and topography that are at the very essence of RCR's way of designing, detailing, and making. Our study situates RCR within the challenges of building in the region, where western forms and means have largely replaced the ingenious responsiveness of indigenous architecture to the climate and material scarcity. The dwellings, iterations of the same steel and concrete vaulting system, highlight the conceptual framework of RCR's design approach to offer a study in contemporary critical regionalism. The Kama House evokes Bedouin tents, while the Alwah House takes the form of desert dunes in response to the temporality of the winds. Metal mesh screens designed to capture the shifting sands will complete the forms. The original research draws on interviews with the architects and unique documentation provided by them and collected by the authors during on-site visits. By examining the two houses in-depth, this paper foregrounds a series of timely questions: 1) What is the impact of the local climatic, cultural, and material conditions on their project in the UAE? 2) How does this work further their experiences in the region? 3) How has RCR adapted their construction techniques as their work expands beyond familiar settings? The investigation seeks to understand how the design methodology developed for more than 20 years and enmeshed in the regional milieu of their hometown can transform as the architects encounter unique characteristics and values in the Middle East. By focusing on the contemporary interpretation of Arabic geometry and elements, the houses reveal the role of geometry, tectonics, and material specificity in the realization from conceptual sketches to built form. In emphasizing the importance of regional responsiveness, the dynamics of international construction practice, and detailing this study highlights essential issues for professionals and students looking to practice in an increasingly global market.

Keywords: material imagination, regional responsiveness, place identity, poetics of construction

Procedia PDF Downloads 145
1217 Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention

Authors: Sergio Alejandro Cuevas, Catherine Etchebest, Fernando Luis Barroso Da Silva

Abstract:

The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies.

Keywords: zika, biomolecular interactions, electrostatic interactions, molecular mechanisms

Procedia PDF Downloads 132
1216 Evaluation of Double Displacement Process via Gas Dumpflood from Multiple Gas Reservoirs

Authors: B. Rakjarit, S. Athichanagorn

Abstract:

Double displacement process is a method in which gas is injected at an updip well to displace the oil bypassed by waterflooding operation from downdip water injector. As gas injection is costly and a large amount of gas is needed, gas dump-flood from multiple gas reservoirs is an attractive alternative. The objective of this paper is to demonstrate the benefits of the novel approach of double displacement process via gas dump-flood from multiple gas reservoirs. A reservoir simulation model consisting of a dipping oil reservoir and several underlying layered gas reservoirs was constructed in order to investigate the performance of the proposed method. Initially, water was injected via the downdip well to displace oil towards the producer located updip. When the water cut at the producer became high, the updip well was shut in and perforated in the gas zones in order to dump gas into the oil reservoir. At this point, the downdip well was open for production. In order to optimize oil recovery, oil production and water injection rates and perforation strategy on the gas reservoirs were investigated for different numbers of gas reservoirs having various depths and thicknesses. Gas dump-flood from multiple gas reservoirs can help increase the oil recovery after implementation of waterflooding upto 10%. Although the amount of additional oil recovery is slightly lower than the one obtained in conventional double displacement process, the proposed process requires a small completion cost of the gas zones and no operating cost while the conventional method incurs high capital investment in gas compression facility and high-pressure gas pipeline and additional operating cost. From the simulation study, oil recovery can be optimized by producing oil at a suitable rate and perforating the gas zones with the right strategy which depends on depths, thicknesses and number of the gas reservoirs. Conventional double displacement process has been studied and successfully implemented in many fields around the world. However, the method of dumping gas into the oil reservoir instead of injecting it from surface during the second displacement process has never been studied. The study of this novel approach will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost.

Keywords: gas dump-flood, multi-gas layers, double displacement process, reservoir simulation

Procedia PDF Downloads 408
1215 Effect of Access to Finance on Innovation and Productivity of SMEs in Nigeria: Evidence from the World Bank Enterprise Survey

Authors: Abidemi C. Adegboye, Samuel Iweriebor

Abstract:

The primary link between financial institutions and economic performance is the provision of resources by these institutions to businesses in order to drive enterprise expansion, sustainability, and development. In this study, the role of access to finance in driving innovations and productivity in Nigerian SMEs is investigated using the World Bank Enterprise Survey (ES) dataset. Innovation is defined based on the ES analysis using five compositions including product, method, organisational, use of foreign-licensed technology, and spending on R&D. The study considers finance in terms of source in meeting investment needs and in terms of access. Moreover, finance access is categorized as external and internal to a firm with each having different implications. The research methodology adopted a survey analysis based on the 2014 World Bank Enterprise Survey of 19 states in Nigeria. The survey comprised over 10,000 manufacturing and services firms, both at the small scale and medium scale levels. The logit estimation technique is used to estimate the relationships in the study. The results from the empirical analysis show that in general, access to finance drives SME innovation in Nigeria. In particular, ease of accessing bank loans and credit is shown to be the strongest positive force in driving all types of innovation among SMEs in Nigeria. In the same vein, the type of finance source for investment matters in terms of how it affects innovation: it is shown that both internal and external sources improve investment in product, process, and organisational innovation, but only external financing has effect on R&D spending and use of foreign licensed technology. Overall spending on R&D is only driven by access to external finance by the SMEs. For productivity, the results show that while structure of financing investment improves productivity, increased access to finance may actually lead to productivity decline among SMEs in Nigeria. There is a need for the financial system to evolve structures to increase fund availability to SMEs in Nigeria, especially for the purpose of innovation investment.

Keywords: access to finance, financing investment, innovation, productivity, SMEs

Procedia PDF Downloads 358
1214 Exploration of the Nonlinear Viscoelastic Behavior of Yogurt Using Lissajous Curves

Authors: Hugo Espinosa-Andrews

Abstract:

Introduction: Yogurt is widely accepted worldwide due to its high nutritional value, consistency, and texture. Their rheological properties play a significant role in consumer acceptance and are related to the manufacturing process and formulation. Typically, the viscoelastic characteristics of yogurts are studied using the small amplitude oscillatory shear test; however, the initial stages of flow and oral processing are described in the nonlinear zone, in which a large amplitude oscillatory stress test is applied. The objective of this work was to analyze the nonlinear viscoelastic behavior of commercial yogurts using Lissajous curves. Methods: Two commercial yogurts were purchased in a local store in Guadalajara Jalisco Mexico: a natural Greek-style yogurt and a low-fat traditional yogurt. Viscoelastic properties were evaluated using a large amplitude oscillatory stress procedure (LAOS). A crosshatch geometry of 40 mm and a truncation of 1000 µm were used. Stress sweeps were performed at 6.28 rad/s from 1 to 250 Pa at 5°C. The nonlinear viscoelastic properties were analyzed using the Lissajous curves. Results: The yogurts showed strain-viscoelastic behavior related to deformation-dependent materials. In the low-strain region, the elastic modulus predominated over the viscous modulus, showing gel-elastic properties. The sol-gel transitions were observed at approximately 66.5 Pa for the Greek yogurt, double that detected for traditional yogurt. The viscoelastic behavior of the yogurts was characteristic of weak excess deformation: behavior indicating a stable molecular structure at rest, and moderate structure at medium shear-forces. The normalized Lissajous curves characterized viscoelastic transitions of the yogurt as the stress increased. Greater viscoelasticity deformation was observed in Greek yogurt than in traditional yogurt, which is related to the presence of a protein network with a greater degree of crosslinking. Conclusions: The yogurt composition influences the viscoelastic properties of the material. Yogurt with the higher percentage of protein has greater viscoelastic and viscous properties, which describe a product of greater consistency and creaminess.

Keywords: yogurt, viscoelastic properties, LAOS, elastic modulus

Procedia PDF Downloads 21
1213 Engineering Properties of Different Lithological Varieties of a Singapore Granite

Authors: Louis Ngai Yuen Wong, Varun Maruvanchery

Abstract:

The Bukit Timah Granite, which is a major rock formation in Singapore, encompasses different rock types such as granite, adamellite, and granodiorite with various hybrid rocks. The present study focuses on the Central Singapore Granite found in the Mandai area. Even within this small aerial extent, lithological variations with respect to the composition, texture as well as the grain size have been recognized in this igneous body. Over the years, the research effort on the Bukit Timah Granite has been focused on achieving a better understanding of its engineering properties in association with civil engineering projects. To our best understanding, a few types of research attempted to systematically investigate the influence of grain size, mineral composition, texture etc. on the strength of Bukit Timah Granite rocks in a comprehensive manner. In typical local industry practices, the different lithological varieties are not differentiated, but all are grouped under Bukit Timah Granite during core logging and the subsequent determination of engineering properties. To address such a major gap in the local engineering geological practice, a preliminary study is conducted on the variations of uniaxial compressive strength (UCS) in seven distinctly different lithological varieties found in the Bukit Timah Granite. Other physical properties including Young’s modulus, P-wave velocity and dry density determined from laboratory testing will also be discussed. The study is supplemented by a petrographical thin section examination. In addition, the specimen failure mode is classified and further correlated with the lithological varieties by carefully observing the details of crack initiation, propagation and coalescence processes in the specimens undergoing loading tests using a high-speed camera. The outcome of this research, which is the first of its type in Singapore, will have a direct implication on the sampling and design practices in the field of civil engineering and particularly underground space development in Singapore.

Keywords: Bukit Timah Granite, lithological variety, thin section study, high speed video, failure mode

Procedia PDF Downloads 322
1212 Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines

Authors: Abdul Matin, Muhammad Ajmal, Uzma Yunus, Noaman-ul Haq, Hafiz M. Shohaib, Ambreen G. Muazzam

Abstract:

Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system.

Keywords: carbon nanoparticles, carbon nanoparticles-methotrexate conjugates, human lung carcinoma cell lines, lactate dehydrogenase, methotrexate

Procedia PDF Downloads 305
1211 The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers

Authors: Katarzyna Falkowicz

Abstract:

The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device.

Keywords: buckling mode, numerical method, unsymmetrical laminates, thin-walled elastic elements

Procedia PDF Downloads 105
1210 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 45