Search results for: zeolitic imidazolate framework 67
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5099

Search results for: zeolitic imidazolate framework 67

4589 Context Specific E-Transformation Decision-Making Framework

Authors: A. Hol

Abstract:

Nowadays, within quickly changing business environments, companies are often faced with specific problems where knowledge required to make timely decisions is often available however is not always readily accessible by the decision makers, in a required form. To identify if in any way via innovative system development companies could be assisted so that they can make quicker industry specific decisions in a given time and space, researchers conducted in depth case study investigation during which they studied company’s e-transformation recommendations, company’s current issues and problems as well as the nature of company’s pressing decisions. This study utilizes Scenario Based Analysis with the aim to help identify parameters crucial for the development of the system that could support decision making in a given time and space. Based on the findings, Context Specific e-transformation decision making framework is proposed.

Keywords: e-transformation, business context, decision making, e-T Guide, ICT

Procedia PDF Downloads 452
4588 Examination of the South African Fire Legislative Framework

Authors: Mokgadi Julia Ngoepe-Ntsoane

Abstract:

The article aims to make a case for a legislative framework for the fire sector in South Africa. Robust legislative framework is essential for empowering those with obligatory mandate within the sector. This article contributes to the body of knowledge in the field of policy reviews particularly with regards to the legal framework. It has been observed overtime that the scholarly contributions in this field are limited. Document analysis was the methodology selected for the investigation of the various legal frameworks existing in the country. It has been established that indeed the national legislation on the fire industry does not exist in South Africa. From the documents analysed, it was revealed that the sector is dominated by cartels who are exploiting the new entrants to the market particularly SMEs. It is evident that these cartels are monopolising the system as they have long been operating in the system turning it into self- owned entities. Commitment to addressing the challenges faced by fire services and creating a framework for the evolving role that fire brigade services are expected to execute in building safer and sustainable communities is vital. Legislation for the fire sector ought to be concluded with immediate effect. The outdated national fire legislation has necessitated the monopolisation and manipulation of the system by dominating organisations which cause a painful discrimination and exploitation of smaller service providers to enter the market for trading in that occupation. The barrier to entry bears long term negative effects on national priority areas such as employment creation, poverty, and others. This monopolisation and marginalisation practices by cartels in the sector calls for urgent attention by government because if left attended, it will leave a lot of people particularly women and youth being disadvantaged and frustrated. The downcast syndrome exercised within the fire sector has wreaked havoc and is devastating. This is caused by cartels that have been within the sector for some time, who know the strengths and weaknesses of processes, shortcuts, advantages and consequences of various actions. These people take advantage of new entrants to the sector who in turn find it difficult to manoeuvre, find the market dissonant and end up giving up their good ideas and intentions. There are many pieces of legislation which are industry specific such as housing, forestry, agriculture, health, security, environmental which are used to regulate systems within the institutions involved. Other regulations exist as bi-laws for guiding the management within the municipalities.

Keywords: sustainable job creation, growth and development, transformation, risk management

Procedia PDF Downloads 173
4587 Impact of Unbalanced Urban Structure on the Traffic Congestion in Biskra, Algeria

Authors: Khaled Selatnia

Abstract:

Nowadays, the traffic congestion becomes increasingly a chronic problem. Sometimes, the cause is attributed to the recurrent road works that create barriers to the efficient movement. But congestion, which usually occurs in cities, can take diverse forms and magnitudes. The case study of Biskra city in Algeria and the diagnosis of its road network show that throughout all the micro regional system, the road network seems at first quite dense. However, this density although it is important, does not cover all areas. A major flow is concentrated in the axis Sidi Okba – Biskra – Tolga. The largest movement of people in the Wilaya (prefecture) revolves around these three centers and their areas of influence. Centers farthest from the trio are very poorly served. This fact leads us to ask questions about the extent of congestion in Biskra city and its relationship to the imbalance of the urban framework. The objective of this paper is to highlight the impact of the urban fact on the traffic congestion.

Keywords: congestion, urban framework, regional, urban and regional studies

Procedia PDF Downloads 625
4586 Niftiness of the COLME to Promote Shared Decision-Making in Organizations

Authors: Prakash Singh

Abstract:

The question that arises is whether a theory such as the Collegial Leadership Model of Emancipation (COLME) has the potency to introduce leadership change by empowering and emancipating their employees. It is a fallacy to simply assume that experience alone, in the absence of theory, will contribute to this knowledge base to develop collegial leaders. The focus of this study is to therefore ascertain whether the COLME can serve as a conceptual framework to transform traditional bureaucratic management practices (TBMPs) in order to promote shared decision-making in organizations such as schools. All the respondents in this exploratory qualitative study embraced collegiality to transform TBMPs in their organizations. For the positive effects to be sustained, the collegial practices need to be evolutionary and emancipatory in order to evoke the values of collegial leadership as elucidated by the findings of this study. Interviewees affirmed that the COLME provides an astute framework to develop commendable collegial leadership practices as it clearly outlines procedures to develop and use the leadership potential of all the employees in order to foster joint accountability. They acknowledged that when the principles of collegiality are flexibly applied, they contribute to the creation of a holistic milieu in which all employees are able to express themselves freely, without fear of failure, and thus feel that they are part of the democratic decision-making process. Evidently, a conceptual framework such as the COLME can serve as a benchmark for leadership effectiveness because organizational outcomes need to be measured against standards of excellence in meeting both employee and customer expectations.

Keywords: collegial leadership model, employee empowerment, shared decision-making, traditional bureaucratic management practices

Procedia PDF Downloads 494
4585 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates

Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.

Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon

Procedia PDF Downloads 239
4584 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry

Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia

Abstract:

Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.

Keywords: barriers, critical success factors, external factors, internal factors, quality management systems

Procedia PDF Downloads 186
4583 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments

Authors: Shaikh Farhad Hossain, Liakot Ali

Abstract:

Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.

Keywords: ADL, SVM, TRIL , MEMS

Procedia PDF Downloads 395
4582 A Fast, Portable Computational Framework for Aerodynamic Simulations

Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo

Abstract:

We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.

Keywords: unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow

Procedia PDF Downloads 292
4581 Measuring Environmental Efficiency of Energy in OPEC Countries

Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani

Abstract:

Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.

Keywords: energy efficiency, undesirable outputs, data envelopment analysis

Procedia PDF Downloads 736
4580 Too Well to Die; Too Ill to Live

Authors: Deepak Jugran

Abstract:

The last century has witnessed rapid scientific growth, and social policies mainly targeted to increase the “life expectancy” of the people. As a result of these developments, the aging as well as ailing population, is increasing by every day. Despite an increase in “life expectancy”, we have not recorded compression in morbidity numbers as the age of onset of the majority of health issues has not increased substantially. In recent years, the prevalence of chronic diseases along with the improved treatment has also resulted in the increase of people living with chronic diseases. The last decade has also focused on social policies to increase the life expectancy in the population; however, in recent decades, social policies and biomedical research are gradually shifting on the potential of increasing healthy life or healthspan. In this article, we review the existing framework of lifespan and healthspan and wish to ignite a discussion among social scientists and public health experts to propose a wholistic framework to balance the trade-offs on social policies for “lifespan” and “healthspan”.

Keywords: lifespan, healthspan, chronic diseases, social policies

Procedia PDF Downloads 106
4579 Navigating Uncertainties in Project Control: A Predictive Tracking Framework

Authors: Byung Cheol Kim

Abstract:

This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.

Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference

Procedia PDF Downloads 18
4578 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability

Procedia PDF Downloads 279
4577 A Secure System for Handling Information from Heterogeous Sources

Authors: Shoohira Aftab, Hammad Afzal

Abstract:

Information integration is a well known procedure to provide consolidated view on sets of heterogeneous information sources. It not only provides better statistical analysis of information but also facilitates users to query without any knowledge on the underlying heterogeneous information sources The problem of providing a consolidated view of information can be handled using Semantic data (information stored in such a way that is understandable by machines and integrate-able without manual human intervention). However, integrating information using semantic web technology without any access management enforced, will results in increase of privacy and confidentiality concerns. In this research we have designed and developed a framework that would allow information from heterogeneous formats to be consolidated, thus resolving the issue of interoperability. We have also devised an access control system for defining explicit privacy constraints. We designed and applied our framework on both semantic and non-semantic data from heterogeneous resources. Our approach is validated using scenario based testing.

Keywords: information integration, semantic data, interoperability, security, access control system

Procedia PDF Downloads 356
4576 Ethical Framework in Organ Transplantation and the Priority Line between Law and Life

Authors: Abel Sichinava

Abstract:

The need for organ transplantation is vigorously increasing worldwide. The numbers on the waiting lists grow, but the number of donors is not keeping up with the demand even though there is a legal possibility of decreasing the gap between the demand and supply. Most countries around the globe are facing an organ donation problem (living or deceased); however, the extent of the problem differs based on how well developed a country is. The determining issues seem to be centered on how aware the society is about the concept of organ donation, as well as cultural and religious factors. Even if people are aware of the benefits of organ donation, they may still have fears that keep them from being in complete agreement with the idea. Some believe that in the case of deceased organ donation: “the brain dead human body may recover from its injuries” or “the sick might get less appropriate treatment if doctors know they are potential donors.” In the case of living organ donations, people sometimes fear that after the donation, “it might reduce work efficiency, cause health deterioration or even death.” Another major obstacle in the organ shortage is a lack of a well developed ethical framework. In reality, there are truly an immense number of people on the waiting list, and they have only two options in order to receive a suitable organ. First is the legal way, which is to wait until their turn. Sadly, numerous patients die while on the waiting list before an appropriate organ becomes available for transplant. The second option is an illegal way: seeking an organ in a country where they can possibly get. To tell the truth, in people’s desire to live, they may choose the second option if their resources are sufficient. This process automatically involves “organ brokers.” These are people who get organs from vulnerable poor people by force or betrayal. As mentioned earlier, the high demand and low supply leads to human trafficking. The subject of the study was the large number of society from different backgrounds of their belief, culture, nationality, level of education, socio-economic status. The great majority of them interviewed online used “Google Drive Survey” and others in person. All statistics and information gathered from trusted sources annotated in the reference list and above mentioned considerable testimonies shared by the respondents are the fundamental evidence of a lack of the well developed ethical framework. In conclusion, the continuously increasing number of people on the waiting list and an irrelevant ethical framework, lead people to commit to atrocious, dehumanizing crimes. Therefore, world society should be equally obligated to think carefully and make vital decisions together for the advancement of an organ donations and its ethical framework.

Keywords: donation, ethical framwork, organ, transplant

Procedia PDF Downloads 150
4575 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance

Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq

Abstract:

In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.

Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF

Procedia PDF Downloads 419
4574 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
4573 Scattered Places in Stories Singularity and Pattern in Geographic Information

Authors: I. Pina, M. Painho

Abstract:

Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).

Keywords: discourse analysis, geographic information science place, place-making, stories

Procedia PDF Downloads 196
4572 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 328
4571 Towards a Mandatory Frame of ADR in Divorce Cases: Key Elements from a Comparative Perspective for Belgium

Authors: Celine Jaspers

Abstract:

The Belgian legal system is slowly evolving to mandatory mediation to promote ADR. One of the reasons for this evolution is the lack of use of alternative methods in relation to their possible benefits. Especially in divorce cases, ADR can play a beneficial role in resolving disputes, since the emotional component is very much present. When children are involved, a solution provided by the parent may be more adapted to the child’s best interest than a court order. In the first part, the lack of use of voluntary ADR and the evolution toward mandatory ADR in Belgium will be indicated by sources of legislation, jurisprudence and social-scientific sources, with special attention to divorce cases. One of the reasons is lack of knowledge on ADR, despite the continuing efforts of the Belgian legislator to promote ADR. One of the last acts of ADR-promotion, was the implementation of an Act in 2018 which gives the judge the possibility to refer parties to mediation if at least one party wants to during the judicial procedure. This referral is subject to some conditions. The parties will be sent to a private mediator, recognized by the Federal Mediation Commission, to try to resolve their conflict. This means that at least one party can be mandated to try mediation (indicated as “semi-mandatory mediation”). The main goal is to establish the factors and elements that Belgium has to take into account in their further development of mandatory ADR, with consideration of the human rights perspective and the EU perspective. Furthermore it is also essential to detect some dangerous pitfalls other systems have encountered with their process design. Therefore, the second part, the comparative component, will discuss the existing framework in California, USA to establish the necessary elements, possible pitfalls and considerations the Belgian legislator can take into account when further developing the framework of mandatory ADR. The contrasting and functional method will be used to create key elements and possible pitfalls, to help Belgium improve its existing framework. The existing mandatory system in California has been in place since 1981 and is still up and running, and can thus provide valuable lessons and considerations for the Belgian system. Thirdly, the key elements from a human rights perspective and from a European Union perspective (e.g. the right to access to a judge, the right to privacy) will be discussed too, since the basic human rights and European legislation and jurisprudence play a significant part in Belgian legislation as well. The main sources for this part will be the international and European treaties, legislation, jurisprudence and soft law. In the last and concluding part, the paper will list the most important elements of a mandatory ADR-system design with special attention to the dangers of these elements (e.g. to include or exclude domestic violence cases in the mandatory ADR-framework and the consequences thereof), and with special attention for the necessary the international and European rights, prohibitions and guidelines.

Keywords: Belgium, divorce, framework, mandatory ADR

Procedia PDF Downloads 155
4570 A Qualitative Study Exploring Factors Influencing the Uptake of and Engagement with Health and Wellbeing Smartphone Apps

Authors: D. Szinay, O. Perski, A. Jones, T. Chadborn, J. Brown, F. Naughton

Abstract:

Background: The uptake of health and wellbeing smartphone apps is largely influenced by popularity indicators (e.g., rankings), rather than evidence-based content. Rapid disengagement is common. This study aims to explore how and why potential users 1) select and 2) engage with such apps, and 3) how increased engagement could be promoted. Methods: Semi-structured interviews and a think-aloud approach were used to allow participants to verbalise their thoughts whilst searching for a health or wellbeing app online, followed by a guided search in the UK National Health Service (NHS) 'Apps Library' and Public Health England’s (PHE) 'One You' website. Recruitment took place between June and August 2019. Adults interested in using an app for behaviour change were recruited through social media. Data were analysed using the framework approach. The analysis is both inductive and deductive, with the coding framework being informed by the Theoretical Domains Framework. The results are further mapped onto the COM-B (Capability, Opportunity, Motivation - Behaviour) model. The study protocol is registered on the Open Science Framework (https://osf.io/jrkd3/). Results: The following targets were identified as playing a key role in increasing the uptake of and engagement with health and wellbeing apps: 1) psychological capability (e.g., reduced cognitive load); 2) physical opportunity (e.g., low financial cost); 3) social opportunity (e.g., embedded social media); 4) automatic motivation (e.g., positive feedback). Participants believed that the promotion of evidence-based apps on NHS-related websites could be enhanced through active promotion on social media, adverts on the internet, and in general practitioner practices. Future Implications: These results can inform the development of interventions aiming to promote the uptake of and engagement with evidence-based health and wellbeing apps, a priority within the UK NHS Long Term Plan ('digital first'). The targets identified across the COM-B domains could help organisations that provide platforms for such apps to increase impact through better selection of apps.

Keywords: behaviour change, COM-B model, digital health, mhealth

Procedia PDF Downloads 165
4569 Management of Intellectual Property Rights: Strategic Patenting

Authors: Waheed Oseni

Abstract:

This article reviews emergent global trends in intellectual property protection and identifies patenting as a strategic initiative. Recent developments in software and method of doing business patenting are fast transforming the e‐business landscape. The article discusses the emergent global regulatory framework concerning intellectual property rights and the strategic value of patenting. Important features of a corporate patenting portfolio are described. Superficially, the e‐commerce landscape appears to be dominated by dotcom start-ups or the “dotcomization” of existing brick and mortar companies. But, in reality, at its very bedrock is intellectual property (IP). In this connection, the recent avalanche of patenting of software and method‐of‐doing‐business (MDB) in the USA is a very significant development with regard to rules governing IP rights and, therefore, e‐commerce. Together with the World Trade Organization’s (WTO) IP rules, there is an emerging global regulatory framework for IP rights, an understanding of which is necessary for designing effective e‐commerce strategies.

Keywords: intellectual property, patents, methods, computer software

Procedia PDF Downloads 526
4568 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper

Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,

Abstract:

The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.

Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK

Procedia PDF Downloads 145
4567 From Proficiency to High Accomplishment: Transformative Inquiry and Institutionalization of Mentoring Practices in Teacher Education in South-Western Nigeria

Authors: Michael A. Ifarajimi

Abstract:

The transition from being a graduate teacher to a highly accomplished teacher has been widely portrayed in literature as challenging. Pre-service teachers are troubled with complex issues such as implementing, assessment, meeting prescribed learning outcomes, taking risks, supporting eco sustainability, etc. This list is not exhaustive as they are further complicated when the concerns extend beyond the classroom into the broader school setting and community. Meanwhile, the pre-service teacher education programme as is currently run in Nigeria, cannot adequately prepare newly trained teachers for the realities of classroom teaching. And there appears to be no formal structure in place for mentoring such teachers by the more seasoned teachers in schools. The central research question of the study, therefore, is which institutional framework can be distinguished for enactment in mentoring practices in teacher education? The study was conducted in five colleges of education in South-West Nigeria, and a sample of 1000 pre-service teachers on their final year practicum was randomly selected from the colleges of education. A pre-service teacher mentorship programme (PTMP) framework was designed and implemented, with a focus on the impact of transformative inquiry on the pre-service teacher support system. The study discovered a significant impact of mentoring on pre-service teacher’s professional transformation. The study concluded that institutionalizing mentorship through transformative inquiry is a means to sustainable teacher education, professional growth, and effective classroom practice. The study recommended that the government should enact policies that will promote mentoring in teacher education and establish a framework for the implementation of mentoring practices in the colleges of education in Nigeria.

Keywords: institutionalization, mentoring, pre-service teachers teacher education, transformative inquiry

Procedia PDF Downloads 133
4566 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
4565 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 125
4564 Framework Development of Carbon Management Software Tool in Sustainable Supply Chain Management of Indian Industry

Authors: Sarbjit Singh

Abstract:

This framework development explored the status of GSCM in manufacturing SMEs and concluded that there was a significant gap w.r.t carbon emissions measurement in the supply chain activities. The measurement of carbon emissions within supply chains is important green initiative toward its reduction. The majority of the SMEs were facing the problem to quantify the green house gas emissions in its supply chain & to make it a low carbon supply chain or GSCM. Thus, the carbon management initiatives were amalgamated with the supply chain activities in order to measure and reduce the carbon emissions, confirming the GHG protocol scopes. Henceforth, it covers the development of carbon management software (CMS) tool to quantify carbon emissions for effective carbon management. This tool is cheap and easy to use for the industries for the management of their carbon emissions within the supply chain.

Keywords: w.r.t carbon emissions, carbon management software, supply chain management, Indian Industry

Procedia PDF Downloads 466
4563 Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: lean management 4.0, value stream management (VSM) 4.0, dynamic value stream mapping, enterprise resource planning (ERP)

Procedia PDF Downloads 150
4562 China-Africa Diplomatic Discourse: Reconstructing the Principle of “Yi” as a Framework for Analyzing Sino-Africa Cooperation

Authors: Modestus Queen

Abstract:

As we know, diplomatic languages carry the political ideology and cultural stance of the country. Knowing that China's diplomatic discourse is complicated and is heavily flavored with Chinese characteristics, one of the core goals of President Xi's administration is to properly tell the story of China. This cannot be done without proper translation or interpretation of major Chinese diplomatic concepts. Therefore, this research seeks to interpret the relevance of "Yi" as used in "Zhèngquè Yì Lì Guān". The author argues that it is not enough to translate a document but that it must be properly interpreted to portray it as political, economic, cultural and diplomatic relevant to the target audience, in this case, African people. The first finding in the current study indicates that literal translation is a bad strategy, especially in Chinese diplomatic discourses. The second finding indicates that "Yi" can be used as a framework to analyze Sino-Africa relations from economic, social and political perspectives, and the third finding indicates that "Yi" is the guiding principle of China's foreign policy towards Africa.

Keywords: Yi, justice, China-Africa, interpretation, diplomatic discourse, discourse reconstruction

Procedia PDF Downloads 140
4561 Optimization Technique for the Contractor’s Portfolio in the Bidding Process

Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry

Abstract:

Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.

Keywords: bidding process, internal resources, optimization, contracting portfolio management

Procedia PDF Downloads 142
4560 An Agile, Intelligent and Scalable Framework for Global Software Development

Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima

Abstract:

Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.

Keywords: agile project management, agile tools/techniques, distributed teams, global software development

Procedia PDF Downloads 313