Search results for: semantic dementia
157 Eye Tracking Syntax in Language Education
Authors: Marcus Maia
Abstract:
The present study reports and discusses the use of eye tracking qualitative data in reading workshops in Brazilian middle and high schools and in Generative Syntax and Sentence Processing courses at the undergraduate and graduate levels at the Federal University of Rio de Janeiro, respectively. Both endeavors take the sentential level as the proper object to be metacognitively explored in language education (cf. Chomsky, Gallego & Ott, 2019) to develop innate science forming capacity and knowledge of language. In both projects, non-discrepant qualitative eye tracking data collected and quantitatively analyzed in experimental syntax and psycholinguistic studies carried out in Lapex (Experimental Psycholinguistics Laboratory of the Federal University of Rio de Janeiro) were displayed to students as a point of departure, triggering discussions. Classes would generally start with the display of videos showing eye tracking data, such as gaze plots and heatmaps from several studies in Psycholinguistics and Experimental Syntax that we had already developed in our laboratory. The videos usually triggered discussions with students about linguistic and psycholinguistic issues, such as the reading of sentences for gist, garden-path sentences, syntactic and semantic anomalies, the filled-gap effect, island effects, direct and indirect cause, and recursive constructions, among other topics. Active, problem-solving based methodologies were employed with the objective of stimulating student participation. The communication also discusses the importance of developing full literacy, epistemic vigilance and intellectual self-defense in an infodemic world in the lines of Maia (2022).Keywords: reading, educational psycholinguistics, eye-tracking, active methodology
Procedia PDF Downloads 66156 How Different Are We After All: A Cross-Cultural Study Using the International Affective Picture System
Authors: Manish Kumar Asthana, Alicia Bundis, Zahn Xu, Braj Bhushan
Abstract:
Despite ample cross-cultural studies with emotional valence, it is unclear if the emotions are universal or particular. Previous studies have shown that the individualist culture favors high-valence emotions compared to low-valence emotions. In contrast, collectivist culture favors low-valence emotions compared to high-valence emotions. In this current study, Chinese, Mexicans, and Indians reported valence and semantic-contingency. In total, 120 healthy participants were selected by ethnicity and matched for age and education. Each participant was presented 45 non-chromatic pictures, which were converted from chromatic pictures selected from International Affective Picture Database (IAPS) belonging to five-categories, i.e. (i) less pleasant, (ii) high pleasant, (iii) less unpleasant (iv) high unpleasant (v) neutral. The valence scores assigned to neutral, less-unpleasant, and high-pleasant pictures differed significantly between Chinese, Indian, and Mexicans participants. Significant effects demonstrated from the two-way ANOVAs, confirmed main significant effects of valence (F(1,117) = 24.83, p =0.000) and valence x country (F(2,117) = 2.74, p = 0.035). Significant effects emerging from the one-way ANOVAs were followed up through Bonferroni’s test post-hoc comparisons (p < 0.01). This analysis showed significant effect of neutral (F(2,119) = 6.50, p =0.002), less-unpleasant (F(2,119) = 13.79, p =0.000), and high-unpleasant (F(2,119) = 5.99, p =0.003). There were no significant differences in valence scores for the less-pleasant and more-pleasant between participants from three countries. The IAPS norms require modification for their appropriate application in individualist and collectivist cultures.Keywords: cultural difference, affective processing, valence, non-chromatic, international affective picture system (IAPS)
Procedia PDF Downloads 140155 A Conceptual Approach for Evaluating the Urban Renewal Process
Authors: Muge Unal, Ahmet Cilek
Abstract:
Urban identity, having a dynamic characteristic spatial and semantic aspects, is a phenomenon in an ever-changing. Urban identity formation includes not only a process of physical nature but also development and change processes that take place in the political, economic, social and cultural values, whether national and international level. Although the concept of urban transformation is basically regarded as the spatial transformation; in fact, it reveals a holistic perspective and transformation based on dialectical relationship existing between the spatial and social relationship. For this reason, urban renewal needs to address as not only spatial but also the impact of spatial transformation on social, cultural and economic. Implementation tools used in the perception of urban transformation are varied concepts such as urban renewal, urban resettlement, urban rehabilitation, urban redevelopment, and urban revitalization. The phenomenon of urban transformation begins with the Industrial Revolution. Until the 1980s, it was interpreted as reconsidering physical fossil on urban environment factor like occurring in rapid urbanization, changing in the spatial structure of the city, concentrating of the population in urban areas. However, after the 1980s, it has resided in a conceptual structure which requires to be addressed physical, economic, social, technological and integrity of information. In conclusion, urban transformation, when it enter the literature as a practice of planning, has been up to date in terms of the conceptual structure and content and also hasn’t remained behind converting itself. Urban transformation still maintains its simplest expression, while it transforms so fast converts the contents. In this study, the relationship between urban design and components of urban transformation were discussed with strategies used as a place in the historical process of urban transformation besides a general evaluation of the concept of urban renewal.Keywords: conceptual approach, urban identity, urban regeneration, urban renewal
Procedia PDF Downloads 430154 An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners
Authors: Yan Huang
Abstract:
Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing
Procedia PDF Downloads 131153 Research on Strategies of Building a Child Friendly City in Wuhan
Authors: Tianyue Wan
Abstract:
Building a child-friendly city (CFC) contributes to improving the quality of urbanization. It also forms a local system committed to fulfilling children's rights and development. Yet, the work related to CFC is still at the initial stage in China. Therefore, taking Wuhan, the most populous city in central China, as the pilot city would offer some reference for other cities. Based on the analysis of theories and practice examples, this study puts forward the challenges of building a child-friendly city under the particularity of China's national conditions. To handle these challenges, this study uses four methods to collect status data: literature research, site observation, research inquiry, and semantic differential (SD). And it adopts three data analysis methods: case analysis, geographic information system (GIS) analysis, and analytic hierarchy process (AHP) method. Through data analysis, this study identifies the evaluation system and appraises the current situation of Wuhan. According to the status of Wuhan's child-friendly city, this study proposes three strategies: 1) construct the evaluation system; 2) establish a child-friendly space system integrating 'point-line-surface'; 3) build a digitalized service platform. At the same time, this study suggests building a long-term mechanism for children's participation and multi-subject supervision from laws, medical treatment, education, safety protection, social welfare, and other aspects. Finally, some conclusions of strategies about CFC are tried to be drawn to promote the highest quality of life for all citizens in Wuhan.Keywords: action plan, child friendly city, construction strategy, urban space
Procedia PDF Downloads 90152 Activation-TV® to Reduce Elderly Loneliness and Insecurity
Authors: Hannele Laaksonen, Seija Nyqvist, Kari Nurmes
Abstract:
Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia.Keywords: mental well-being, quality of life, elderly people, Finland
Procedia PDF Downloads 342151 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 106150 Written Narrative Texts as the Indicators of Communication Competence of Pupils and Students with Hearing Impairment in the Czech Language
Authors: Marie Komorna, Katerina Hadkova
Abstract:
One reason why hearing disabilities as compared to other disabilities are considered to be less serious, is the belief that deaf and hard of hearing persons can read and write without problems and can therefore fairly easily compensate for problems related to their limited ability to hear sound. However in reality this is not the case, especially as regards written Czech, deaf persons are often not able to communicate their message clearly to its recipients. Their inability to communicate fully in written language is one of the most severe problems facing a number of deaf persons, a problem which they face and which makes it difficult for them to function in a sound-based environment. Despite this fact, this issue is one which has been given only a minimum of attention in the Czech Republic. That is why we decided to focus our research on this issue, specifically targeting written communication of deaf pupils in primary and secondary schools. The paper summarizes the background and objectives of this research. The written work of deaf respondents was obtained in response to a narrative based on a series of images which depicted a continuous storyline. Based on an analysis of the obtained written work we tried to describe the specifics of the narrative abilities of the deaf authors of these texts. We also analyzed other aspects and specific traits of text written by deaf authors at a phonetic-phonological, lexical-semantic, morphological and syntactic, respectively pragmatic level. Based on the results of the project it will be possible to increase knowledge of the communication abilities of deaf persons in written Czech. The obtained data may be used during future research and for teaching purposes and/or education concepts for teaching Czech to deaf pupils.Keywords: communication competence, deaf, narrative, written texts
Procedia PDF Downloads 338149 A Linguistic Product of K-Pop: A Corpus-Based Study on the Korean-Originated Chinese Neologism Simida
Authors: Hui Shi
Abstract:
This article examines the online popularity of Chinese neologism simida, which is a loanword derived from Korean declarative sentence-final suffix seumnida. Facilitated by corpus data obtained from Weibo, the Chinese counterpart of Twitter, this study analyzes the morphological and syntactical processes behind simida’s coinage, as well as the causes of its prevalence on Chinese social media. The findings show that simida is used by Weibo bloggers in two manners: (1) as an alternative word of 'Korea' and 'Korean'; (2) as a redundant sentence-final particle which adds a Korean-like speech style to a statement. Additionally, Weibo user profile analysis further reveals demographical distribution patterns concerning this neologism and highlights young Weibo users in the third-tier cities as the leading adopters of simida. These results are accounted for under the theoretical framework of social indexicality, especially how variations generate style in the indexical field. This article argues that the creation of such an ethnically-targeted neologism is a linguistic demonstration of Chinese netizen’s two-sided attitudes toward the previously heated Korean-wave. The exotic suffix seumnida is borrowed to Chinese as simida due to its high-frequency in Korean cultural exports. Therefore, it gradually becomes a replacement of Korea-related lexical items due to markedness, regardless of semantic prosody. Its innovative implantation to Chinese syntax, on the other hand, reflects Chinese netizens’ active manipulation of language for their online identity building. This study has implications for research on the linguistic construction of identity and style and lays the groundwork for linguistic creativity in the Chinese new media.Keywords: Chinese neologism, loanword, humor, new media
Procedia PDF Downloads 174148 Analyzing Emerging Scientific Domains in Biomedical Discourse: Case Study Comparing Microbiome, Metabolome, and Metagenome Research in Scientific Articles
Authors: Kenneth D. Aiello, M. Simeone, Manfred Laubichler
Abstract:
It is increasingly difficult to analyze emerging scientific fields as contemporary scientific fields are more dynamic, their boundaries are more porous, and the relational possibilities have increased due to Big Data and new information sources. In biomedicine, where funding, medical categories, and medical jurisdiction are determined by distinct boundaries on biomedical research fields and definitions of concepts, ambiguity persists between the microbiome, metabolome, and metagenome research fields. This ambiguity continues despite efforts by institutions and organizations to establish parameters on the core concepts and research discourses. Further, the explosive growth of microbiome, metabolome, and metagenomic research has led to unknown variation and covariation making application of findings across subfields or coming to a consensus difficult. This study explores the evolution and variation of knowledge within the microbiome, metabolome, and metagenome research fields related to ambiguous scholarly language and commensurable theoretical frameworks via a semantic analysis of key concepts and narratives. A computational historical framework of cultural evolution and large-scale publication data highlight the boundaries and overlaps between the competing scientific discourses surrounding the three research areas. The results of this study highlight how discourse and language distribute power within scholarly and scientific networks, specifically the power to set and define norms, central questions, methods, and knowledge.Keywords: biomedicine, conceptual change, history of science, philosophy of science, science of science, sociolinguistics, sociology of knowledge
Procedia PDF Downloads 130147 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings
Authors: Jude K. Safo
Abstract:
Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics
Procedia PDF Downloads 68146 Efficacy of Clickers in L2 Interaction
Authors: Ryoo Hye Jin Agnes
Abstract:
This study aims to investigate the efficacy of clickers in fostering L2 class interaction. In an L2 classroom, active learner-to-learner interactions and learner-to-teacher interactions play an important role in language acquisition. In light of this, introducing learning tools that promote such interactions would benefit L2 classroom by fostering interaction. This is because the anonymity of clickers allows learners to express their needs without the social risks associated with speaking up in the class. clickers therefore efficiently help learners express their level of understanding during the process of learning itself. This allows for an evaluative feedback loop where both learners and teachers understand the level of progress of the learners, better enabling classrooms to adapt to the learners’ needs. Eventually this tool promotes participation from learners. This, in turn, is believed to be effective in fostering classroom interaction, allowing learning to take place in a more comfortable yet vibrant way. This study is finalized by presenting the result of an experiment conducted to verify the effectiveness of this approach when teaching pragmatic aspect of Korean expressions with similar semantic functions. The learning achievement of learners in the experimental group was found higher than the learners’ in a control group. A survey was distributed to the learners, questioning them regarding the efficacy of clickers, and how it contributed to their learning in areas such as motivation, self-assessment, increasing participation, as well as giving feedback to teachers. Analyzing the data collected from the questionnaire given to the learners, the study presented data suggesting that this approach increased the scope of interactivity in the classroom, thus not only increasing participation but enhancing the type of classroom participation among learners. This participation in turn led to a marked improvement in their communicative abilities.Keywords: second language acquisition, interaction, clickers, learner response system, output from learners, learner’s cognitive process
Procedia PDF Downloads 521145 Commercial Management vs. Quantity Surveying: Hoax or Harmonization
Authors: Zelda Jansen Van Rensburg
Abstract:
Purpose: This study investigates the perceived disparities between Quantity Surveying and Commercial Management in the construction industry, questioning if these differences are substantive or merely semantic. It aims to challenge the conventional notion of Commercial Managers’ superiority by critically evaluating QS and CM roles, exploring CM integration possibilities, examining qualifications for aspiring Commercial Managers, assessing regulatory frameworks, and considering terminology redefinition for global QS professional enhancement. Design: Utilizing mixed methods like literature reviews, surveys, interviews, and document analyses, this research examines the QS-CM relationship. Insights from industry professionals, academics, and regulatory bodies inform the investigation into changing QS roles. Findings: Empirical data highlight evolving roles, showcasing areas of convergence and divergence between QSs and CM. Potential CM integration into QS practice and qualifications for aspiring Commercial Managers are identified. Limitations/Implications: Limitations include potential bias in self-reported data and findings. Nevertheless, the research informs future practices and educational approaches in QS and CM, reflecting the changing roles and responsibilities of Quantity Surveyors. Practical Implications: Findings inform industry practitioners, educators, and regulators, stressing the need to adapt to changing QS roles and integrate CM principles where applicable. Value to the Conference Theme: Aligned with ‘Evolving roles and responsibilities of Quantity Surveyors,’ this research offers insights crucial for understanding the changing dynamics within the QS profession and informs strategies to navigate these shifts effectively.Keywords: quantity surveying, commercial management, cost engineering, quantity survey
Procedia PDF Downloads 40144 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research
Authors: Chan Kwong Tung
Abstract:
Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching
Procedia PDF Downloads 344143 Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies
Authors: Bright Chukwunwike Uzuegbunam, Wojciech Paslawski, Hans Agren, Christer Halldin, Wolfgang Weber, Markus Luster, Thomas Arzberger, Behrooz Hooshyar Yousefi
Abstract:
There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans.Keywords: alpha-synuclein aggregates, alpha-synucleinopathies, PET imaging, tracer development
Procedia PDF Downloads 235142 Investigating Complement Clause Choice in Written Educated Nigerian English (ENE)
Authors: Juliet Udoudom
Abstract:
Inappropriate complement selection constitutes one of the major features of non-standard complementation in the Nigerian users of English output of sentence construction. This paper investigates complement clause choice in Written Educated Nigerian English (ENE) and offers some results. It aims at determining preferred and dispreferred patterns of complement clause selection in respect of verb heads in English by selected Nigerian users of English. The complementation data analyzed in this investigation were obtained from experimental tasks designed to elicit complement categories of Verb – Noun -, Adjective – and Prepositional – heads in English. Insights from the Government – Binding relations were employed in analyzing data, which comprised responses obtained from one hundred subjects to a picture elicitation exercise, a grammaticality judgement test, and a free composition task. The findings indicate a general tendency for clausal complements (CPs) introduced by the complementizer that to be preferred by the subjects studied. Of the 235 tokens of clausal complements which occurred in our corpus, 128 of them representing 54.46% were CPs headed by that, while whether – and if-clauses recorded 31.07% and 8.94%, respectively. The complement clause-type which recorded the lowest incidence of choice was the CP headed by the Complementiser, for with a 5.53% incident of occurrence. Further findings from the study indicate that semantic features of relevant embedding verb heads were not taken into consideration in the choice of complementisers which introduce the respective complement clauses, hence the that-clause was chosen to complement verbs like prefer. In addition, the dispreferred choice of the for-clause is explicable in terms of the fact that the respondents studied regard ‘for’ as a preposition, and not a complementiser.Keywords: complement, complement clause complement selection, complementisers, government-binding
Procedia PDF Downloads 188141 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-Fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.Keywords: fact checking, claim verification, deep learning, natural language processing
Procedia PDF Downloads 62140 The Association Between CYP2C19 Gene Distribution and Medical Cannabis Treatment
Authors: Vichayada Laohapiboolkul
Abstract:
Introduction: As the legal use of cannabis is being widely accepted throughout the world, medical cannabis has been explored in order to become an alternative cure for patients. Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are natural cannabinoids found in the Cannabis plant which is proved to have positive treatment for various diseases and symptoms such as chronic pain, neuropathic pain, spasticity resulting from multiple sclerosis, reduce cancer-associated pain, autism spectrum disorders (ASD), dementia, cannabis and opioid dependence, psychoses/schizophrenia, general social anxiety, posttraumatic stress disorder, anorexia nervosa, attention-deficit hyperactivity disorder, and Tourette's disorder. Regardless of all the medical benefits, THC, if not metabolized, can lead to mild up to severe adverse drug reactions (ADR). The enzyme CYP2C19 was found to be one of the metabolizers of THC. However, the suballele CYP2C19*2 manifests as a poor metabolizer which could lead to higher levels of THC than usual, possibly leading to various ADRs. Objective: The aim of this study was to investigate the distribution of CYP2C19, specifically CYP2C19*2, genes in Thai patients treated with medical cannabis along with adverse drug reactions. Materials and Methods: Clinical data and EDTA whole blood for DNA extraction and genotyping were collected from patients for this study. CYP2C19*2 (681G>A, rs4244285) genotyping was conducted using the Real-time PCR (ABI, Foster City, CA, USA). Results: There were 42 medical cannabis-induced ADRs cases and 18 medical cannabis tolerance controls who were included in this study. A total of 60 patients were observed where 38 (63.3%) patients were female and 22 (36.7%) were male, with a range of age approximately 19 - 87 years. The most apparent ADRs for medical cannabis treatment were dry mouth/dry throat (76.7%), followed by tachycardia (70%), nausea (30%) and a few arrhythmias (10%). In the total of 27 cases, we found a frequency of 18 CYP2C19*1/*1 alleles (normal metabolizers, 66.7%), 8 CYP2C19*1/*2 alleles (intermediate metabolizers, 29.6%) and 1 CYP2C19*2/*2 alleles (poor metabolizers, 3.7%). Meanwhile, 63.6% of CYP2C19*1/*1, 36.3% and 0% of CYP2C19*1/*2 and *2/*2 in the tolerance controls group, respectively. Conclusions: This is the first study to confirm the distribution of CYP2C19*2 allele and the prevalence of poor metabolizer genes in Thai patients who received medical cannabis for treatment. Thus, CYP2C19 allele might serve as a pharmacogenetics marker for screening before initiating treatment.Keywords: medical cannabis, adverse drug reactions, CYP2C19, tetrahydrocannabinol, poor metabolizer
Procedia PDF Downloads 103139 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 156138 AI-based Digital Healthcare Application to Assess and Reduce Fall Risks in Residents of Nursing Homes in Germany
Authors: Knol Hester, Müller Swantje, Danchenko Natalya
Abstract:
Objective: Falls in older people cause an autonomy loss and result in an economic burden. LCare is an AI-based application to manage fall risks. The study's aim was to assess the effect of LCare use on patient outcomes in nursing homes in Germany. Methods: LCare identifies and monitors fall risks through a 3D-gait analysis and a digital questionnaire, resulting in tailored recommendations on fall prevention. A study was conducted with AOK Baden-Württemberg (01.09.2019- 31.05.2021) in 16 care facilities. Assessments at baseline and follow-up included: a fall risk score; falls (baseline: fall history in the past 12 months; follow-up: a fall record since the last analysis); fall-related injuries and hospitalizations; gait speed; fear of falling; psychological stress; nurses experience on app use. Results: 94 seniors were aged 65-99 years at the initial analysis (average 84±7 years); 566 mobility analyses were carried out in total. On average, the fall risk was reduced by 17.8 % as compared to the baseline (p<0.05). The risk of falling decreased across all subgroups, including a trend in dementia patients (p=0.06), constituting 43% of analyzed patients, and patients with walking aids (p<0.05), constituting 76% of analyzed patients. There was a trend (p<0.1) towards fewer falls and fall-related injuries and hospitalizations (baseline: 23 seniors who fell, 13 injury consequences, 9 hospitalizations; follow-up: 14 seniors who fell, 2 injury consequences, 0 hospitalizations). There was a 16% improvement in gait speed (p<0.05). Residents reported less fear of falling and psychological stress by 38% in both outcomes (p<0.05). 81% of nurses found LCare effective. Conclusions: In the presented study, the use of LCare app was associated with a reduction of fall risk among nursing home residents, improvement of health-related outcomes, and a trend toward reduction in injuries and hospitalizations. LCare may help to improve senior resident care and save healthcare costs.Keywords: falls, digital healthcare, falls prevention, nursing homes, seniors, AI, digital assessment
Procedia PDF Downloads 131137 Analyzing Environmental Emotive Triggers in Terrorist Propaganda
Authors: Travis Morris
Abstract:
The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.Keywords: propaganda analysis, emotive triggers environmental security, frames
Procedia PDF Downloads 138136 Inappropriate Prescribing Defined by START and STOPP Criteria and Its Association with Adverse Drug Events among Older Hospitalized Patients
Authors: Mohd Taufiq bin Azmy, Yahaya Hassan, Shubashini Gnanasan, Loganathan Fahrni
Abstract:
Inappropriate prescribing in older patients has been associated with resource utilization and adverse drug events (ADE) such as hospitalization, morbidity and mortality. Globally, there is a lack of published data on ADE induced by inappropriate prescribing. Our study is specific to an older population and is aimed at identifying risk factors for ADE and to develop a model that will link ADE to inappropriate prescribing. The design of the study was prospective whereby computerized medical records of 302 hospitalized elderly aged 65 years and above in 3 public hospitals in Malaysia (Hospital Serdang, Hospital Selayang and Hospital Sungai Buloh) were studied over a 7 month period from September 2013 until March 2014. Potentially inappropriate medications and potential prescribing omissions were determined using the published and validated START-STOPP criteria. Patients who had at least one inappropriate medication were included in Phase II of the study where ADE were identified by local expert consensus panel based on the published and validated Naranjo ADR probability scale. The panel also assessed whether ADE were causal or contributory to current hospitalization. The association between inappropriate prescribing and ADE (hospitalization, mortality and adverse drug reactions) was determined by identifying whether or not the former was causal or contributory to the latter. Rate of ADE avoidability was also determined. Our findings revealed that the prevalence of potential inappropriate prescribing was 58.6%. A total of ADEs were detected in 31 of 105 patients (29.5%) when STOPP criteria were used to identify potentially inappropriate medication; All of the 31 ADE (100%) were considered causal or contributory to admission. Of the 31 ADEs, 28 (90.3%) were considered avoidable or potentially avoidable. After adjusting for age, sex, comorbidity, dementia, baseline activities of daily living function, and number of medications, the likelihood of a serious avoidable ADE increased significantly when a potentially inappropriate medication was prescribed (odds ratio, 11.18; 95% confidence interval [CI], 5.014 - 24.93; p < .001). The medications identified by STOPP criteria, are significantly associated with avoidable ADE in older people that cause or contribute to urgent hospitalization but contributed less towards morbidity and mortality. Findings of the study underscore the importance of preventing inappropriate prescribing.Keywords: adverse drug events, appropriate prescribing, health services research
Procedia PDF Downloads 398135 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot
Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan
Abstract:
Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.Keywords: ADAS, home zone parking pilot, object detection, visual SLAM
Procedia PDF Downloads 67134 The Role of Executive Functions and Emotional Intelligence in Leadership: A Neuropsychological Perspective
Authors: Chrysovalanto Sofia Karatosidi, Dimitra Iordanoglou
Abstract:
The overlap of leadership skills with personality traits, beliefs, values, and the integration of cognitive abilities, analytical and critical thinking skills into leadership competencies raises the need to segregate further and investigate them. Hence, the domains of cognitive functions that contribute to leadership effectiveness should also be identified. Organizational cognitive neuroscience and neuroleadership can shed light on the study of these critical leadership skills. As the first part of our research, this pilot study aims to explore the relationships between higher-order cognitive functions (executive functions), trait emotional intelligence (EI), personality, and general cognitive ability in leadership. Twenty-six graduate and postgraduate students were assessed on neuropsychological tests that measure important aspects of executive functions (EF) and completed self-reported questionnaires about trait EI, personality, leadership styles, and leadership effectiveness. Specifically, we examined four core EF—fluency (phonemic and semantic), information updating and monitoring, working memory, and inhibition of prepotent responses. Leadership effectiveness was positively associated with phonemic fluency (PF), which involves mental flexibility, in turn, an increasingly important ability for future leaders in this rapidly changing world. Transformational leadership was positively associated with trait EI, extraversion, and openness to experience, a result that is following previous findings. The relationship between specific EF constructs and leadership effectiveness emphasizes the role of higher-order cognitive functions in the field of leadership as an individual difference. EF brings a new perspective into leadership literature by providing a direct, non-invasive, scientifically-valid connection between brain function and leadership behavior.Keywords: cognitive neuroscience, emotional intelligence, executive functions, leadership
Procedia PDF Downloads 157133 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 322132 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints
Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu
Abstract:
Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning
Procedia PDF Downloads 53131 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 147130 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 337129 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 39128 The Ideology of the Jordanian Media Women’s Discourse: Lana Mamkgh as an Example
Authors: Amani Hassan Abu Atieh
Abstract:
This study aims at examining the patterns of ideology reflected in the written discourse of women writers in the media of Jordan; Lana Mamkgh is taken as an example. This study critically analyzes the discursive, linguistic, and cognitive representations that she employs as an agent in the institutionalized discourse of the media. Grounded in van Dijk’s critical discourse analysis approach to Sociocognitive Discourse Studies, the present study builds a multilayer framework that encompasses van Dijk’s triangle: discourse, society, and cognition. Specifically, the study attempts to analyze, at both micro and macro levels, the underlying cognitive processes and structures, mainly ideology and discursive strategies, which are functional in the production of women’s discourse in terms of meaning, forms, and functions. Cognitive processes that social actors adopt are underlined by experience/context and semantic mental models on the one hand and social cognition on the other. This study is based on qualitative research and adopts purposive sampling, taking as an example a sample of an opinion article written by Lana Mamkgh in the Arabic Jordanian Daily, Al Rai. Taking her role as an agent in the public sphere, she stresses the National and feminist ideologies, demonstrating the use of assertive, evaluative, and expressive linguistic and rhetorical devices that appeal to the logic, ethics, and emotions of the addressee. Highlighting the agency of Jordanian writers in the media, the study sought to achieve the macro goal of dispensing political and social justice to the underprivileged. Further, the study seeks to prove that the voice of Jordanian women, viewed as underrepresented and invisible in the public arena, has come through clearly.Keywords: critical discourse analysis, sociocognitive theory, ideology, women discourse, media
Procedia PDF Downloads 108