Search results for: hierarchical model predictive control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25682

Search results for: hierarchical model predictive control

25172 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models

Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel

Abstract:

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.

Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling

Procedia PDF Downloads 146
25171 An Attempt to Explore Occupational Stressors among West Bengal Police Officials

Authors: Malini Nandi Majumdar, Avijan Dutta

Abstract:

The West Police (WBP) is restructured under provisions of the Police Act 1861 during the period of British domination. It is one of the two police forces of the Indian state of west Bengal and is headed by an officer designated as Director General of Police (DG) who directly reports to the State Government. It covers a jurisdiction with eighteen revenue districts of the state and a District Superintendent of Police (SP) controls each district. The purpose of this empirical study is to explore the causes and factors of occupational stress in West Bengal Police officers so that the incumbents can perform their assigned tasks more diligently and the society could be free from evils and devils at a large. Using a self-developed close ended questionnaire that covers 20 critical job-related stressors, the study captures 310 respondents across the organizational hierarchy ranging from Sub Inspectors to the Superintendant of police and covers 5 districts and one commision rate under the jurisdiction of West Bengal Police. The present research has successfully indicated four major occupational stressors such as Organizational Stressors, Hierarchical Stressors, Situational Stressors and Environmental Stressors with 64% of the variance. Further we have employed CFA to determine the goodness of fit indices in terms of i) Absolute Fit Measures like CMIN, FMIN, RMSEA, ECVI ii) Incremental Fit Measures like TLI, NFI, AGFI, CFI(Byne, 2010) demonstrate that value of the measure has passed the requirement criteria and thus fit the model. The major stressors of West Bengal Police have been explored and the ways to deal with these inevitable stressors have been suggested.

Keywords: organizational stressors, hierarchical stressors, situational stressors, environmental stressors

Procedia PDF Downloads 379
25170 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 226
25169 An Optimal Control Model to Determine Body Forces of Stokes Flow

Authors: Yuanhao Gao, Pin Lin, Kees Weijer

Abstract:

In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.

Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method

Procedia PDF Downloads 384
25168 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads

Authors: Chinazo Onyeka Eziuzo

Abstract:

This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.

Keywords: simulation, control, wind turbine, OpenFAST

Procedia PDF Downloads 98
25167 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS

Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija

Abstract:

Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.

Keywords: multilevel modelling, family planning, predictors, Nigeria

Procedia PDF Downloads 402
25166 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 49
25165 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft

Authors: Nauman Idrees

Abstract:

Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.

Keywords: fly-by-wire, flight controls system, model based design, Simulink

Procedia PDF Downloads 102
25164 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx

Authors: Yao Song

Abstract:

Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.

Keywords: GZSCC, OCSCC, OPSCC, HPV

Procedia PDF Downloads 64
25163 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: backstipping, DFIG, power control, sliding-mode, WESC

Procedia PDF Downloads 576
25162 Fuzzy Control and Pertinence Functions

Authors: Luiz F. J. Maia

Abstract:

This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance.

Keywords: control surface, fuzzy control, Inverted pendulum, pertinence functions

Procedia PDF Downloads 430
25161 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 157
25160 Predictive Power of Achievement Motivation on Student Engagement and Collaborative Problem Solving Skills

Authors: Theresa Marie Miller, Ma. Nympha Joaquin

Abstract:

The aim of this study was to check the predictive power of social-oriented and individual-oriented achievement motivation on student engagement and collaborative problem-solving skills in mathematics. A sample of 277 fourth year high school students from the Philippines were selected. Surveys and videos of collaborative problem solving activity were used to collect data from respondents. The mathematics teachers of the participants were interviewed to provide qualitative support on the data. Systemaitc correlation and regression analysis were employed. Results of the study showed that achievement motivations−SOAM and IOAM− linearly predicted student engagement but was not significantly associated to the collaborative problem-solving skills in mathematics. Student engagement correlated positively with collaborative problem-solving skills in mathematics. The results contribute to theorizing about the predictive power of achievement motivations, SOAM and IOAM on the realm of academic behaviors and outcomes as well as extend the understanding of collaborative problem-solving skills of 21st century learners.

Keywords: achievement motivation, collaborative problem-solving skills, individual-oriented achievement motivation, social-oriented achievement motivation, student engagement

Procedia PDF Downloads 296
25159 A Profile of an Exercise Addict: The Relationship between Exercise Addiction and Personality

Authors: Klary Geisler, Dalit Lev-Arey, Yael Hacohen

Abstract:

It is a well-known fact that exercise has favorable effects on people's physical health, as well as mental well-being. However, as for as excessive exercise, it may likely elevate negative consequences (e.g., physical injuries, negligence of everyday responsibilities such as work, family life). Lately, there is a growing interest in exercise addiction, sometimes referred to as exercise dependence, which is defined as a craving for physical activity that results in extreme work-out sessions and generates negative physiological and psychological symptoms (e.g., withdrawal symptoms, tolerance, social conflict). Exercise addiction is considered a behavioral addiction, yet it was not included in the latest editions of the diagnostic and statistical manual of mental disorders (DSM-IV), due to lack of significant research. Specifically, there is scarce research on the relationship between exercise addiction and personality dimensions. The purpose of the current research was to examine the relationship between primary exercise addiction symptoms and the big five dimensions, perfectionism (high performance expectations and self-critical performance evaluations) and subjective affect. participants were 152 trainees on a variety of aerobic sports activities (running, cycling, swimming) that were recruited through sports groups and trainers. 88% of participants trained for at least 5 hours per week, 24% of the participants trained above 10 hours per week. To test the predictive ability of the IVs a hierarchical linear regression with forced block entry was performed. It was found that Neuroticism significantly predicted exercise addiction symptoms (20% of the variance, p<0.001), while consciousness was negatively correlated with exercise addiction symptoms (14% of variance p<0.05); both had a unique contribution. Other dimensions of the big five (agreeableness, openness and extraversion) did not have any contribution to the dependent. Moreover, maladaptive perfectionism (self-critical performance evaluations) significantly predicted exercise addiction symptoms as well (10% of the variance P < 0.05). The overall regression model explained 54% of variance.

Keywords: big five, consciousness, excessive exercise, exercise addiction, neuroticism, perfectionism, personality

Procedia PDF Downloads 206
25158 Unbreakable Obedience of Safety Regulation: The Study of Authoritarian Leadership and Safety Performance

Authors: Hong-Yi Kuo

Abstract:

Leadership is a key factor of improving workplace safety, and there have been abundant of studies which support the positive effects of appropriate leadership on employee safety performance in the western academic. However, little safety research focus on the Chinese leadership style like paternalistic leadership. To fill this gap, the resent study aims to examine the relationship between authoritarian leadership (one of the ternary mode in paternalistic leadership) and safety outcomes. This study makes hypothesis on different levels. First, on the group level, as an authoritarian leader regards safety value as the most important tasks, there would be positive effect on group safety outcomes through strengthening safety group norms by the emphasis on etiquette. Second, on the cross level, when a leader with authoritarian style has high priority on safety, employees may more obey the safety rules because of fear due to emphasis on absolute authority over the leader. Therefore, employees may show more safety performance and then increase individual safety outcomes. Survey data would be collected from 50 manufacturing groups (each group with more than 5 members and a leader) and a hierarchical linear modeling analysis would be conducted to analyze the hypothesis. Above the predictive result, the study expects to be a cornerstone of safety leadership research in the Chinese academic and practice.

Keywords: safety leadership, authoritarian leadership, group norms, safety behavior, supervisor safety priority

Procedia PDF Downloads 213
25157 Using the Transtheoretical Model to Investigate Stages of Change in Regular Volunteer Service among Seniors in Community

Authors: Pei-Ti Hsu, I-Ju Chen, Jeu-Jung Chen, Cheng-Fen Chang, Shiu-Yan Yang

Abstract:

Taiwan now is an aging society Research on the elderly should not be confined to caring for seniors, but should also be focused on ways to improve health and the quality of life. Senior citizens who participate in volunteer services could become less lonely, have new growth opportunities, and regain a sense of accomplishment. Thus, the question of how to get the elderly to participate in volunteer service is worth exploring. Apply the Transtheoretical Model to understand stages of change in regular volunteer service and voluntary service behaviour among the seniors. 1525 adults over the age of 65 from the Renai district of Keelung City were interviewed. The research tool was a self-constructed questionnaire and individual interviews were conducted to collect data. Then the data was processed and analyzed using the IBM SPSS Statistics 20 (Windows version) statistical software program. In the past six months, research subjects averaged 9.92 days of volunteer services. A majority of these elderly individuals had no intention to change their regular volunteer services. We discovered that during the maintenance stage, the self-efficacy for volunteer services was higher than during all other stages, but self-perceived barriers were less during the preparation stage and action stage. Self-perceived benefits were found to have an important predictive power for those with regular volunteer service behaviors in the previous stage, and self-efficacy was found to have an important predictive power for those with regular volunteer service behaviors in later stages. The research results support the conclusion that community nursing staff should group elders based on their regular volunteer services change stages and design appropriate behavioral change strategies.

Keywords: seniors, stages of change in regular volunteer services, volunteer service behavior, self-efficacy, self-perceived benefits

Procedia PDF Downloads 407
25156 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer

Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack

Abstract:

We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.

Keywords: machine learning control, mixing layer, feedback control, model-free control

Procedia PDF Downloads 205
25155 Hierarchical Surface Inspired by Lotus-Leaf for Electrical Generators from Waterdrop

Authors: Jaewook Ha, Jin-beak Kim, Seongmin Kim

Abstract:

In order to solve global warming and climate change issues, increased efforts have been devoted towards clean and sustainable energy sources as well as new energy generating devices. Nanogenerator is a device that converts mechanical/thermal energy as produced by small-scale physical change into electricity. Here we propose that nature-leaf surface could be used for preparation of a triboelectric nanogenerator. The nature-leaf surface consists of polydimethylsiloxane microscale pillars and polytetrafluoroethylene nanoparticles. Interaction between the nature-leaf surface and water was studied and the electrical outputs from the motion of single water drop were measured. A 40-μL water drop can generate a peak voltage of 1 V and a peak current of 0.7 μA. This nanogenerator might be used to drive electric devices in the outdoor environments in a sustainable manner.

Keywords: hierarchical surface, lotus-leaf, electrical generator, waterdrop

Procedia PDF Downloads 278
25154 Alternating Current Photovoltaic Module Model

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents modeling of a Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: PV modeling, AC PV Module, datasheet, VI curves irradiance, temperature, MPPT, Matlab/Simulink

Procedia PDF Downloads 555
25153 A Research on Tourism Market Forecast and Its Evaluation

Authors: Min Wei

Abstract:

The traditional prediction methods of the forecast for tourism market are paid more attention to the accuracy of the forecasts, ignoring the results of the feasibility of forecasting and predicting operability, which had made it difficult to predict the results of scientific testing. With the application of Linear Regression Model, this paper attempts to construct a scientific evaluation system for predictive value, both to ensure the accuracy, stability of the predicted value, and to ensure the feasibility of forecasting and predicting the results of operation. The findings show is that a scientific evaluation system can implement the scientific concept of development, the harmonious development of man and nature co-ordinate.

Keywords: linear regression model, tourism market, forecast, tourism economics

Procedia PDF Downloads 313
25152 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 189
25151 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 257
25150 A Unique Exact Approach to Handle a Time-Delayed State-Space System: The Extraction of Juice Process

Authors: Mohamed T. Faheem Saidahmed, Ahmed M. Attiya Ibrahim, Basma GH. Elkilany

Abstract:

This paper discusses the application of Time Delay Control (TDC) compensation technique in the juice extraction process in a sugar mill. The objective is to improve the control performance of the process and increase extraction efficiency. The paper presents the mathematical model of the juice extraction process and the design of the TDC compensation controller. Simulation results show that the TDC compensation technique can effectively suppress the time delay effect in the process and improve control performance. The extraction efficiency is also significantly increased with the application of the TDC compensation technique. The proposed approach provides a practical solution for improving the juice extraction process in sugar mills using MATLAB Processes.

Keywords: time delay control (TDC), exact and unique state space model, delay compensation, Smith predictor.

Procedia PDF Downloads 67
25149 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 70
25148 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes

Authors: Lucas Paganin, Viliam Makis

Abstract:

With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.

Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart

Procedia PDF Downloads 76
25147 Trauma Scores and Outcome Prediction After Chest Trauma

Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag

Abstract:

Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.

Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries

Procedia PDF Downloads 407
25146 Hierarchical Zeolites as Catalysts for Cyclohexene Epoxidation Reactions

Authors: Agnieszka Feliczak-Guzik, Paulina Szczyglewska, Izabela Nowak

Abstract:

A catalyst-assisted oxidation reaction is one of the key reactions exploited by various industries. Their conductivity yields essential compounds and intermediates, such as alcohols, epoxides, aldehydes, ketones, and organic acids. Researchers are devoting more and more attention to developing active and selective materials that find application in many catalytic reactions, such as cyclohexene epoxidation. This reaction yields 1,2-epoxycyclohexane and 1,2-diols as the main products. These compounds are widely used as intermediates in the perfume industry and synthesizing drugs and lubricants. Hence, our research aimed to use hierarchical zeolites modified with transition metal ions, e.g., Nb, V, and Ta, in the epoxidation reaction of cyclohexene using microwaveheating. Hierarchical zeolites are materials with secondary porosity, mainly in the mesoporous range, compared to microporous zeolites. In the course of the research, materials based on two commercial zeolites, with Faujasite (FAU) and Zeolite Socony Mobil-5 (ZSM-5) structures, were synthesized and characterized by various techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption/desorption isotherms. The materials obtained were then used in a cyclohexene epoxidation reaction, which was carried out as follows: catalyst (0.02 g), cyclohexene (0.1 cm3), acetonitrile (5 cm3) and dihydrogen peroxide (0.085 cm3) were placed in a suitable glass reaction vessel with a magnetic stirrer inside in a microwave reactor. Reactions were carried out at 45° C for 6 h (samples were taken every 1 h). The reaction mixtures were filtered to separate the liquid products from the solid catalyst and then transferred to 1.5 cm3 vials for chromatographic analysis. The test techniques confirmed the acquisition of additional secondary porosity while preserving the structure of the commercial zeolite (XRD and low-temperature nitrogen adsorption/desorption isotherms). The results of the activity of the hierarchical catalyst modified with niobium in the cyclohexene epoxidation reaction indicate that the conversion of cyclohexene, after 6 h of running the process, is about 70%. As the main product of the reaction, 2-cyclohexanediol was obtained (selectivity > 80%). In addition to the mentioned product, adipic acid, cyclohexanol, cyclohex-2-en-1-one, and 1,2-epoxycyclohexane were also obtained. Furthermore, in a blank test, no cyclohexene conversion was obtained after 6 h of reaction. Acknowledgments The work was carried out within the project “Advanced biocomposites for tomorrow’s economy BIOG-NET,” funded by the Foundation for Polish Science from the European Regional Development Fund (POIR.04.04.00-00-1792/18-00.

Keywords: epoxidation, oxidation reactions, hierarchical zeolites, synthesis

Procedia PDF Downloads 62
25145 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 240
25144 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 88
25143 Learning Performance of Sports Education Model Based on Self-Regulated Learning Approach

Authors: Yi-Hsiang Pan, Ching-Hsiang Chen, Wei-Ting Hsu

Abstract:

The purpose of this study was to compare the learning effects of the sports education model (SEM) to those of the traditional teaching model (TTM) in physical education classes in terms of students learning motivation, action control, learning strategies, and learning performance. A quasi-experimental design was utilized in this study, and participants included two physical educators and four classes with a total of 94 students in grades 5 and 6 of elementary schools. Two classes implemented the SEM (n=47, male=24, female=23; age=11.89, SD=0.78) and two classes implemented the TTM (n=47, male=25, female=22, age=11.77; SD=0.66). Data were collected from these participants using a self-report questionnaire (including a learning motivation scale, action control scale, and learning strategy scale) and a game performance assessment instrument, and multivariate analysis of covariance was used to conduct statistical analysis. The findings of the study revealed that the SEM was significantly better than the TTM in promoting students learning motivation, action control, learning strategies, and game performance. It was concluded that the SEM could promote the mechanics of students self-regulated learning process, and thereby improve students movement performance.

Keywords: self-regulated learning theory, learning process, curriculum model, physical education

Procedia PDF Downloads 327