Search results for: decision problem np-complete
10146 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization
Procedia PDF Downloads 19010145 Moderation Role of Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians
Authors: Larry O. Awo, George N. Duru
Abstract:
There is growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement driven by the quest for resource gains. However, evidences show that the economic model of gambling tend to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover loses has often initiated and prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcome as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decision of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at a low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings are that IOC and upward counterfactual reasoning were risk factors and promote gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.Keywords: counterfactual reasoning, gambling cognition, gambling decision, nigeria, youths
Procedia PDF Downloads 10910144 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products
Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter
Abstract:
Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling
Procedia PDF Downloads 45910143 Public Participation and Decision-Making towards Planning Legislation: A Case for GCC Countries
Authors: Saad Saeed Althiabi
Abstract:
There is great progress in formulating and executing legislative policies in GCC, however, the public participation in formulating and in major decision making still remains weak. Drawing attention on the international law of public participation in construction and natural resource management, this paper aims in creating a feasible legislative framework for extensive public participation in the industries such as construction and oil and gas decision-making that GCC can implement. This paper would address the conflicts associated with the management and creation of legislation and ensuring public participation for the creation of a practical framework. A feasible legislative framework must take into account the various factors that shape the effectiveness of participation and the elements that promote the objectives of participation. It is premised on the ground that viewing to international prescriptions might help to reveal gaps in domestic laws, as well as alternatives to overcome them.Keywords: legislative policies, public participation, planning legislation, GCC countries, international law
Procedia PDF Downloads 53610142 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations
Authors: Karthikeyan Kalirajan, Ashok Joshi
Abstract:
An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection
Procedia PDF Downloads 42910141 The Choosing the Right Projects With Multi-Criteria Decision Making to Ensure the Sustainability of the Projects
Authors: Saniye Çeşmecioğlu
Abstract:
The importance of project sustainability and success has become increasingly significant due to the proliferation of external environmental factors that have decreased project resistance in contemporary times. The primary approach to forestall the failure of projects is to ensure their long-term viability through the strategic selection of projects as creating judicious project selection framework within the organization. Decision-makers require precise decision contexts (models) that conform to the company's business objectives and sustainability expectations during the project selection process. The establishment of a rational model for project selection enables organizations to create a distinctive and objective framework for the selection process. Additionally, for the optimal implementation of this decision-making model, it is crucial to establish a Project Management Office (PMO) team and Project Steering Committee within the organizational structure to oversee the framework. These teams enable updating project selection criteria and weights in response to changing conditions, ensuring alignment with the company's business goals, and facilitating the selection of potentially viable projects. This paper presents a multi-criteria decision model for selecting project sustainability and project success criteria that ensures timely project completion and retention. The model was developed using MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) and was based on broadcaster companies’ expectations. The ultimate results of this study provide a model that endorses the process of selecting the appropriate project objectively by utilizing project selection and sustainability criteria along with their respective weights for organizations. Additionally, the study offers suggestions that may ascertain helpful in future endeavors.Keywords: project portfolio management, project selection, multi-criteria decision making, project sustainability and success criteria, MACBETH
Procedia PDF Downloads 6310140 Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems
Authors: Wlodzimierz Ogryczak, Tomasz Sliwinski, Jaroslaw Hurkala, Mariusz Kaleta, Bartosz Kozlowski, Piotr Palka
Abstract:
Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.'Keywords: mobile personnel management, multiple criteria, time dependent, time windows, vehicle routing and scheduling
Procedia PDF Downloads 32310139 Urgent Need for E -Waste Management in Mongolia
Authors: Enkhjargal Bat-Ochir
Abstract:
The global market of electrical and electronic equipment (EEE) has increasing rapidly while the lifespan of these products has become increasingly shorter. So, e-waste is becoming the world’s fastest growing waste stream. E-waste is a huge problem when it’s not properly disposed of, as these devices contain substances that are harmful to the environment and to human health as they contaminate the land, water, and air. This paper tends to highlight e-waste problem and harmful effects and can grasp the extent of the problem and take the necessary measures to solve it in Mongolia and to improve standards and human health.Keywords: e -waste, recycle, electrical, Mongolia
Procedia PDF Downloads 42010138 Analysis of an Error Estimate for the Asymptotic Solution of the Heat Conduction Problem in a Dilated Pipe
Authors: E. Marušić-Paloka, I. Pažanin, M. Prša
Abstract:
Subject of this study is the stationary heat conduction problem through a pipe filled with incompressible viscous fluid. In previous work, we observed the existence and uniqueness theorems for the corresponding boundary-value problem and within we have taken into account the effects of the pipe's dilatation due to the temperature of the fluid inside of the pipe. The main difficulty comes from the fact that flow domain changes depending on the solution of the observed heat equation leading to a non-standard coupled governing problem. The goal of this work is to find solution estimate since the exact solution of the studied problem is not possible to determine. We use an asymptotic expansion in order of a small parameter which is presented as a heat expansion coefficient of the pipe's material. Furthermore, an error estimate is provided for the mentioned asymptotic approximation of the solution for inner area of the pipe. Close to the boundary, problem becomes more complex so different approaches are observed, mainly Theory of Perturbations and Separations of Variables. In view of that, error estimate for the whole approximation will be provided with additional software simulations of gotten situation.Keywords: asymptotic analysis, dilated pipe, error estimate, heat conduction
Procedia PDF Downloads 23710137 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem
Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit
Abstract:
We study the existence of positive solutions to the three points difference summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.Keywords: positive solution, boundary value problem, fixed point theorem, cone
Procedia PDF Downloads 43910136 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem
Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab
Abstract:
The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover
Procedia PDF Downloads 13810135 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach
Authors: D. Tedesco, G. Feletti, P. Trucco
Abstract:
The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection
Procedia PDF Downloads 9110134 Contractor Selection by Using Analytical Network Process
Authors: Badr A. Al-Jehani
Abstract:
Nowadays, contractor selection is a critical activity of the project owner. Selecting the right contractor is essential to the project manager for the success of the project, and this cab happens by using the proper selecting method. Traditionally, the contractor is being selected based on his offered bid price. This approach focuses only on the price factor and forgetting other essential factors for the success of the project. In this research paper, the Analytic Network Process (ANP) method is used as a decision tool model to select the most appropriate contractor. This decision-making method can help the clients who work in the construction industry to identify contractors who are capable of delivering satisfactory outcomes. Moreover, this research paper provides a case study of selecting the proper contractor among three contractors by using ANP method. The case study identifies and computes the relative weight of the eight criteria and eleven sub-criteria using a questionnaire.Keywords: contractor selection, project management, decision-making, bidding
Procedia PDF Downloads 9010133 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain
Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala
Abstract:
The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.Keywords: emotions, decision making, somatic marker, consumer´s brain
Procedia PDF Downloads 40910132 Analysis of Preferences in Decision Making in a Bilateral Negotiation Context: An Experimental Approach from Game Theory
Authors: Laura V. Gonzalez, Juan B. Duarte, Luis A. Palacio
Abstract:
Decision making can be conditioned by factors such as the environments, circumstances, behavioral biases, emotions, beliefs and preferences of the participants. The objective of this paper is to analyze the effect ‘amount of information’ and ‘number of options’, on the behavior of competitors under a bilateral negotiation context. For the above, it has been designed an experiment as a classroom game where they negotiate goods, under the condition that none of the players knows exactly the real value of the asset. The game is designed under the concept of zero-sum (non-cooperative game) and focuses on the fact that agents must anticipate the strategies of their opponent to improve their chances of winning in the negotiation. The empirical results show that, contrary to the traditional view of expected utility theory, players prefer to obtain low profits and losses, when faced with a higher expectation of losses, using sub-optimal strategies not in accordance with game theory.Keywords: bilateral negotiation, classroom game, decision making, game theory
Procedia PDF Downloads 26510131 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 62710130 Virtual Simulation as a Teaching Method for Community Health Nursing: An Investigation of Student Performance
Authors: Omar Mayyas
Abstract:
Clinical decision-making (CDM) is essential to community health nursing (CHN) education. For this reason, nursing educators are responsible for developing these skills among nursing students because nursing students are exposed to highly critical conditions after graduation. However, due to limited exposure to real-world situations, many nursing students need help developing clinical decision-making skills in this area. Therefore, the impact of Virtual Simulation (VS) on community health nursing students' clinical decision-making in nursing education has to be investigated. This study aims to examine the difference in CDM ability among CHN students who received traditional education compared to those who received VS classes, to identify the factors that may influence CDM ability differences between CHN students who received a traditional education and VS classes, and to provide recommendations for educational programs that can enhance the CDM ability of CHN students and improve the quality of care provided in community settings. A mixed-method study will conduct. A randomized controlled trial will compare the CDM ability of CHN students who received 1hr traditional class with another group who received 1hr VS scenario about diabetic patient nursing care. Sixty-four students in each group will randomly select to be exposed to the intervention from undergraduate nursing students who completed the CHN course at York University. The participants will receive the same Clinical Decision Making in Nursing Scale (CDMNS) questionnaire. The study intervention will follow the Medical Research Council (MRC) approach. SPSS and content analysis will use for data analysis.Keywords: clinical decision-making, virtual simulation, community health nursing students, community health nursing education
Procedia PDF Downloads 6710129 A Soft System Methodology Approach to Stakeholder Engagement in Water Sensitive Urban Design
Authors: Lina Lukusa, Ulrike Rivett
Abstract:
Poor water management can increase the extreme pressure already faced by water scarcity. Unless water management is addressed holistically, water quality and quantity will continue to degrade. A holistic approach to water management named Water Sensitive Urban Design (WSUD) has thus been created to facilitate the effective management of water. Traditionally, water management has employed a linear design approach, while WSUD requires a systematic, cyclical approach. In simple terms, WSUD assumes that everything is connected. Hence, it is critical for different stakeholders involved in WSUD to engage and reach a consensus on a solution. However, many stakeholders in WSUD have conflicting interests. Using the soft system methodology (SSM), developed by Peter Checkland, as a problem-solving method, decision-makers can understand this problematic situation from different world views. The SSM addresses ill and complex challenging situations involving human activities in a complex structured scenario. This paper demonstrates how SSM can be applied to understand the complexity of stakeholder engagement in WSUD. The paper concludes that SSM is an adequate solution to understand a complex problem better and then propose efficient solutions.Keywords: co-design, ICT platform, soft systems methodology, water sensitive urban design
Procedia PDF Downloads 12210128 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model
Authors: Xiaobao Han, Huacong Li, Jia Li
Abstract:
For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator
Procedia PDF Downloads 39910127 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools
Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez
Abstract:
The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.Keywords: flow-shop scheduling problem, makespan, Petri nets, state equation
Procedia PDF Downloads 29810126 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 16010125 Heuristic for Scheduling Correlated Parallel Machine to Minimize Maximum Lateness and Total Weighed Completion Time
Authors: Yang-Kuei Lin, Yun-Xi Zhang
Abstract:
This research focuses on the bicriteria correlated parallel machine scheduling problem. The two objective functions considered in this problem are to minimize maximum lateness and total weighted completion time. We first present a mixed integer programming (MIP) model that can find the entire efficient frontier for the studied problem. Next, we have proposed a bicriteria heuristic that can find non-dominated solutions for the studied problem. The performance of the proposed bicriteria heuristic is compared with the efficient frontier generated by solving the MIP model. Computational results indicate that the proposed bicriteria heuristic can solve the problem efficiently and find a set of diverse solutions that are uniformly distributed along the efficient frontier.Keywords: bicriteria, correlated parallel machines, heuristic, scheduling
Procedia PDF Downloads 14110124 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem
Authors: Rajeev, N. K. Raigar
Abstract:
In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem
Procedia PDF Downloads 40410123 Pareto Optimal Material Allocation Mechanism
Authors: Peter Egri, Tamas Kis
Abstract:
Scheduling problems have been studied by the algorithmic mechanism design research from the beginning. This paper is focusing on a practically important, but theoretically rather neglected field: the project scheduling problem where the jobs connected by precedence constraints compete for various nonrenewable resources, such as materials. Although the centralized problem can be solved in polynomial-time by applying the algorithm of Carlier and Rinnooy Kan from the Eighties, obtaining materials in a decentralized environment is usually far from optimal. It can be observed in practical production scheduling situations that project managers tend to cache the required materials as soon as possible in order to avoid later delays due to material shortages. This greedy practice usually leads both to excess stocks for some projects and materials, and simultaneously, to shortages for others. The aim of this study is to develop a model for the material allocation problem of a production plant, where a central decision maker—the inventory—should assign the resources arriving at different points in time to the jobs. Since the actual due dates are not known by the inventory, the mechanism design approach is applied with the projects as the self-interested agents. The goal of the mechanism is to elicit the required information and allocate the available materials such that it minimizes the maximal tardiness among the projects. It is assumed that except the due dates, the inventory is familiar with every other parameters of the problem. A further requirement is that due to practical considerations monetary transfer is not allowed. Therefore a mechanism without money is sought which excludes some widely applied solutions such as the Vickrey–Clarke–Groves scheme. In this work, a type of Serial Dictatorship Mechanism (SDM) is presented for the studied problem, including a polynomial-time algorithm for computing the material allocation. The resulted mechanism is both truthful and Pareto optimal. Thus the randomization over the possible priority orderings of the projects results in a universally truthful and Pareto optimal randomized mechanism. However, it is shown that in contrast to problems like the many-to-many matching market, not every Pareto optimal solution can be generated with an SDM. In addition, no performance guarantee can be given compared to the optimal solution, therefore this approximation characteristic is investigated with experimental study. All in all, the current work studies a practically relevant scheduling problem and presents a novel truthful material allocation mechanism which eliminates the potential benefit of the greedy behavior that negatively influences the outcome. The resulted allocation is also shown to be Pareto optimal, which is the most widely used criteria describing a necessary condition for a reasonable solution.Keywords: material allocation, mechanism without money, polynomial-time mechanism, project scheduling
Procedia PDF Downloads 33310122 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education
Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman
Abstract:
Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.Keywords: usage, software, diagnosis and treatment, medical education
Procedia PDF Downloads 35910121 A Fuzzy Analytic Hierarchy Process Approach for the Decision of Maintenance Priorities of Building Entities: A Case Study in a Facilities Management Company
Authors: Wai Ho Darrell Kwok
Abstract:
Building entities are valuable assets of a society, however, all of them are suffered from the ravages of weather and time. Facilitating onerous maintenance activities is the only way to either maintain or enhance the value and contemporary standard of the premises. By the way, maintenance budget is always bounded by the corresponding threshold limit. In order to optimize the limited resources allocation in carrying out maintenance, there is a substantial need to prioritize maintenance work. This paper reveals the application of Fuzzy AHP in a Facilities Management Company determining the maintenance priorities on the basis of predetermined criteria, viz., Building Status (BS), Effects on Fabrics (EF), Effects on Sustainability (ES), Effects on Users (EU), Importance of Usage (IU) and Physical Condition (PC) in dealing with categorized 8 predominant building components maintenance aspects for building premises. From the case study, it is found that ‘building exterior repainting or re-tiling’, ‘spalling concrete repair works among exterior area’ and ‘lobby renovation’ are the top three maintenance priorities from facilities manager and maintenance expertise personnel. Through the application of the Fuzzy AHP for maintenance priorities decision algorithm, a more systemic and easier comparing scalar linearity factors being explored even in considering other multiple criteria decision scenarios of building maintenance issue.Keywords: building maintenance, fuzzy AHP, maintenance priority, multi-criteria decision making
Procedia PDF Downloads 24310120 Finite Element Analysis of a Dynamic Linear Crack Problem
Authors: Brian E. Usibe
Abstract:
This paper addresses the problem of a linear crack located in the middle of a homogeneous elastic media under normal tension-compression harmonic loading. The problem of deformation of the fractured media is solved using the direct finite element numerical procedure, including the analysis of the dynamic field variables of the problem. A finite element algorithm that satisfies the unilateral Signorini contact constraint is also presented for the solution of the contact interaction of the crack faces and how this accounts for the qualitative and quantitative changes in the solution when determining the dynamic fracture parameter.Keywords: harmonic loading, linear crack, fracture parameter, wave number, FEA, contact interaction
Procedia PDF Downloads 4410119 A Method for Improving the Embedded Runge Kutta Fehlberg 4(5)
Authors: Sunyoung Bu, Wonkyu Chung, Philsu Kim
Abstract:
In this paper, we introduce a method for improving the embedded Runge-Kutta-Fehlberg 4(5) method. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. This solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, EULR problem is numerically solved.Keywords: embedded Runge-Kutta-Fehlberg method, initial value problem, EULR problem, integration step
Procedia PDF Downloads 46410118 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 37410117 Analysis of Conditional Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians
Authors: Larry O. Awo, George N. Duru
Abstract:
There are growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement was driven by a quest for resource gains. However, evidence shows that the economic model of gambling tends to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover losses has often initiated prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcomes as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decisions of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p <.05, respectively), 2) downward counterfactual reasoning was negatively associated with the decision to gamble more to recover losses (B = 10.03, t = 3.21, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at the low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings is that IOC and upward counterfactual reasoning were risk factors and promoted gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.Keywords: counterfactual reasoning, gambling cognition, gambling decision, Nigeria, youths
Procedia PDF Downloads 91