Search results for: computing with words
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2253

Search results for: computing with words

1743 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm

Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo

Abstract:

Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.

Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation

Procedia PDF Downloads 79
1742 “Congratulations, I Am Sorry for Your Loss”. A Qualitative Study to Help Healthcare Providers Search for Words When a Baby Dies

Authors: Liesbeth Van Kelst, Jozefiene Jansens

Abstract:

Background: All care providers within mother and child care are confronted, at some point in their career, with the care for parents who (will) lose or have lost a baby. Obtaining the correct attitude and communicating well during these difficult moments are aspects that many healthcare provides continue to struggle with. Parents still encounter well-intentioned but inappropriate communication from healthcare providers. Aim: To study how communication, both verbal and non-verbal, around the death of a baby during pregnancy, birth, or in the first ten days postnatal was experienced by parents and healthcare providers. Methods: A qualitative study using grounded theory principles was conducted. Data were collected through 22 individual face-to-face in-depth interviews with parents who had lost a baby (n = 12) and intramural caregivers, such as midwives, nurses, gynecologists and neonatologists (n=10). In the first phase, data were analyzed within each group separately (parents and healthcare providers) and in the second phase, findings from both groups were compared and analyzed according to meta-synthesis principles. Results: The themes that emerged from the data demonstrated congruent experiences between the group of the parents and the health care providers. Both strengths and weaknesses in current care were named and suggestions for appropriate communication were formulated. Conclusion: Since most health care providers only occasionally care for parents with a deceased baby, a communication tool can optimize communication between healthcare professionals and parents who lose a baby. This is very important as the words which are said at this difficult period last a lifetime in the heads of parents.

Keywords: communication, death, perinatal loss, stillbirth

Procedia PDF Downloads 225
1741 Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks

Authors: Vishal Pareek, Shubham Gupta, Sushil Chandra Jain

Abstract:

With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits.

Keywords: parity preserving gate, quantum computing, fault tolerance, flip-flop, sequential reversible logic

Procedia PDF Downloads 545
1740 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 533
1739 A Real-World Roadmap and Exploration of Quantum Computers Capacity to Trivialise Internet Security

Authors: James Andrew Fitzjohn

Abstract:

This paper intends to discuss and explore the practical aspects of cracking encrypted messages with quantum computers. The theory of this process has been shown and well described both in academic papers and headline-grabbing news articles, but with all theory and hyperbole, we must be careful to assess the practicalities of these claims. Therefore, we will use real-world devices and proof of concept code to prove or disprove the notion that quantum computers will render the encryption technologies used by many websites unfit for purpose. It is time to discuss and implement the practical aspects of the process as many advances in quantum computing hardware/software have recently been made. This paper will set expectations regarding the useful lifespan of RSA and cipher lengths and propose alternative encryption technologies. We will set out comprehensive roadmaps describing when and how encryption schemes can be used, including when they can no longer be trusted. The cost will also be factored into our investigation; for example, it would make little financial sense to spend millions of dollars on a quantum computer to factor a private key in seconds when a commodity GPU could perform the same task in hours. It is hoped that the real-world results depicted in this paper will help influence the owners of websites who can take appropriate actions to improve the security of their provisions.

Keywords: quantum computing, encryption, RSA, roadmap, real world

Procedia PDF Downloads 131
1738 Effect of Phonological Complexity in Children with Specific Language Impairment

Authors: Irfana M., Priyandi Kabasi

Abstract:

Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli.

Keywords: coarticulation, minimal contrast, phonological complexity, specific language impairment

Procedia PDF Downloads 142
1737 Using Computerized Analogical Reasoning Tasks as a Way to Improve Literacy Skills in Children with Mild Intellectual Disability

Authors: Caroline Denaes

Abstract:

The ability to read is crucial for a successful path in school and in a social and professional context. Children with mild intellectual disability are confronted to serious difficulties in literacy. A lot of them do not read or are illiterate. Only one child out of five is able to acquire basic reading skills, which increases the likelihood to misfit in society, especially when these children grow up and cannot manage themselves in situations requiring higher reading levels. One way to help these children acquiring basic reading skills is to use analogical reasoning, as some researchers demonstrated that this mechanism is fundamental for any reading process. For this purpose, we developed computerized analogies displayed on a touch screen tablet. Analogies are comparisons that give children a framework they can use to understand new information. They work by comparing one thing to another in order to emphasize some mutual quality. If one of the items is unfamiliar, that mutual quality can help make it understandable, or it can cause the children to consider something familiar in some new way, such as transferring what they know about familiar words to help them identify unfamiliar words. In addition, using touch screen tablets represents several advantages: the ease of use, the relevance to this specific population and the appeal of a self-directed activity gives individuals and practitioners a modern tool that differs from the traditional paper-and-pencil material. In addition, the touch screen dimension is especially appropriate for children as assistive technology has been found to be more motivating that any other types of devices and improves the children’ attention span.

Keywords: literacy, intellectual disabilities, touch screen techonology, literacy skill

Procedia PDF Downloads 270
1736 Equivalences and Contrasts in the Morphological Formation of Echo Words in Two Indo-Aryan Languages: Bengali and Odia

Authors: Subhanan Mandal, Bidisha Hore

Abstract:

The linguistic process whereby repetition of all or part of the base word with or without internal change before or after the base itself takes place is regarded as reduplication. The reduplicated morphological construction annotates with itself a new grammatical category and meaning. Reduplication is a very frequent and abundant phenomenon in the eastern Indian languages from the states of West Bengal and Odisha, i.e. Bengali and Odia respectively. Bengali, an Indo-Aryan language and a part of the Indo-European language family is one of the largest spoken languages in India and is the national language of Bangladesh. Despite this classification, Bengali has certain influences in terms of vocabulary and grammar due to its geographical proximity to Tibeto-Burman and Austro-Asiatic language speaking communities. Bengali along with Odia belonged to a single linguistic branch. But with time and gradual linguistic changes due to various factors, Odia was the first to break away and develop as a separate distinct language. However, less of contrasts and more of similarities still exist among these languages along the line of linguistics, leaving apart the script. This paper deals with the procedure of echo word formations in Bengali and Odia. The morphological research of the two languages concerning the field of reduplication reveals several linguistic processes. The revelation is based on the information elicited from native language speakers and also on the analysis of echo words found in discourse and conversational patterns. For the purpose of partial reduplication analysis, prefixed class and suffixed class word formations are taken into consideration which show specific rule based changes. For example, in suffixed class categorization, both consonant and vowel alterations are found, following the rules: i) CVx à tVX, ii) CVCV à CVCi. Further classifications were also found on sentential studies of both languages which revealed complete reduplication complexities while forming echo words where the head word lose its original meaning. Complexities based on onomatopoetic/phonetic imitation of natural phenomena and not according to any rule-based occurrences were also found. Taking these aspects into consideration which are very prevalent in both the languages, inferences are drawn from the study which bring out many similarities in both the languages in this area in spite of branching away from each other several years ago.

Keywords: consonant alteration, onomatopoetic, partial reduplication and complete reduplication, reduplication, vowel alteration

Procedia PDF Downloads 242
1735 Error Analysis of Pronunciation of French by Sinhala Speaking Learners

Authors: Chandeera Gunawardena

Abstract:

The present research analyzes the pronunciation errors encountered by thirty Sinhala speaking learners of French on the assumption that the pronunciation errors were systematic and they reflect the interference of the native language of the learners. The thirty participants were selected using random sampling method. By the time of the study, the subjects were studying French as a foreign language for their Bachelor of Arts Degree at University of Kelaniya, Sri Lanka. The participants were from a homogenous linguistics background. All participants speak the same native language (Sinhala) thus they had completed their secondary education in Sinhala medium and during which they had also learnt French as a foreign language. A battery operated audio tape recorder and a 120-minute blank cassettes were used for recording. A list comprised of 60 words representing all French phonemes was used to diagnose pronunciation difficulties. Before the recording process commenced, the subjects were requested to familiarize themselves with the words through reading them several times. The recording was conducted individually in a quiet classroom and each recording approximately took fifteen minutes. Each subject was required to read at a normal speed. After the completion of recording, the recordings were replayed to identify common errors which were immediately transcribed using the International Phonetic Alphabet. Results show that Sinhala speaking learners face problems with French nasal vowels and French initial consonants clusters. The learners also exhibit errors which occur because of their second language (English) interference.

Keywords: error analysis, pronunciation difficulties, pronunciation errors, Sinhala speaking learners of French

Procedia PDF Downloads 210
1734 GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform

Authors: Md. Enamul Haque, Abdullah Al Kaisan, Mahmudur R. Saniat, Aminur Rahman

Abstract:

In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression.

Keywords: accelerated GPU, CUDA, parallel computing, fractal image compression

Procedia PDF Downloads 335
1733 The Phonology and Phonetics of Second Language Intonation in Case of “Downstep”

Authors: Tayebeh Norouzi

Abstract:

This study aims to investigate the acquisition process of intonation. It examines the intonation structure of Tokyo Japanese and its realization by Iranian learners of Japanese. Seven Iranian learners of Japanese, differing in fluency, and two Japanese speakers participated in the experiment. Two sentences were used to test the phonological and phonetic characteristics of lexical pitch-accent as well as the intonation patterns produced by the speakers. Both sentences consisted of similar words with the same number of syllables and lexical pitch-accents but different syntactic structure. Speakers were asked to read each sentence three times at normal speed, and the data were analyzed by Praat. The results show that lexical pitch-accent, Accentual Phrase (AP) and AP boundary tone realization vary depending on sentence type. For sentences of type XdeYwo, the lexical pitch-accent is realized properly. However, there is a rise in AP boundary tone regardless of speakers’ level of fluency. In contrast, in sentences of type XnoYwo, the lexical pitch-accent and AP boundary tone vary depending on the speakers’ fluency level. Advanced speakers are better at grouping words into phrases and produce more native-like intonation patterns, though they are not able to realize downstep properly. The non-native speakers tried to realize proper intonation patterns by making changes in lexical accent and boundary tone.

Keywords: intonation, Iranian learners, Japanese prosody, lexical accent, second language acquisition.

Procedia PDF Downloads 169
1732 Occasional Word-Formation in Postfeminist Fiction: Cognitive Approach

Authors: Kateryna Nykytchenko

Abstract:

Modern fiction and non-fiction writers commonly use their own lexical and stylistic devices to capture a reader’s attention and bring certain thoughts and feelings to his reader. Among such devices is the appearance of one of the neologic notions – individual author’s formations: occasionalisms or nonce words. To a significant extent, the host of examples of new words occurs in chick lit genre which has experienced exponential growth in recent years. Chick Lit is a new-millennial postfeminist fiction which focuses primarily on twenty- to thirtysomething middle-class women. It brings into focus the image of 'a new woman' of the 21st century who is always fallible, funny. This paper aims to investigate different types of occasional word-formation which reflect cognitive mechanisms of conveying women’s perception of the world. Chick lit novels of Irish author Marian Keyes present genuinely innovative mixture of forms, both literary and nonliterary which is displayed in different types of occasional word-formation processes such as blending, compounding, creative respelling, etc. Crossing existing mental and linguistic boundaries, adopting herself to new and overlapping linguistic spaces, chick lit author creates new words which demonstrate the result of development and progress of language and the relationship between language, thought and new reality, ultimately resulting in hybrid word-formation (e.g. affixation or pseudoborrowing). Moreover, this article attempts to present the main characteristics of chick-lit fiction genre with the help of the Marian Keyes’s novels and their influence on occasionalisms. There has been a lack of research concerning cognitive nature of occasionalisms. The current paper intends to account for occasional word-formation as a set of interconnected cognitive mechanisms, operations and procedures meld together to create a new word. The results of the generalized analysis solidify arguments that the kind of new knowledge an occasionalism manifests is inextricably linked with cognitive procedure underlying it, which results in corresponding type of word-formation processes. In addition, the findings of the study reveal that the necessity of creating occasionalisms in postmodern fiction novels arises from the need to write in a new way keeping up with a perpetually developing world, and thus the evolution of the speaker herself and her perception of the world.

Keywords: Chick Lit, occasionalism, occasional word-formation, cognitive linguistics

Procedia PDF Downloads 181
1731 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 317
1730 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches

Authors: Mariam Matiashvili

Abstract:

Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.

Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon

Procedia PDF Downloads 70
1729 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology

Authors: Alime Cengiz, Talip Kahyaoglu

Abstract:

Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.

Keywords: genetic expression programming, response surface methodology, roasting, sesame seed

Procedia PDF Downloads 418
1728 Smart Online Library Catalog System with Query Expansion for the University of the Cordilleras

Authors: Vincent Ballola, Raymund Dilan, Thelma Palaoag

Abstract:

The Smart Online Library Catalog System with Query Expansion seeks to address the low usage of the library because of the emergence of the Internet. Library users are not accustomed to catalog systems that need a query to have the exact words without any mistakes for decent results to appear. The graphical user interface of the current system has a rather skewed learning curve for users to adapt with. With a simple graphical user interface inspired by Google, users can search quickly just by inputting their query and hitting the search button. Because of the query expansion techniques incorporated into the new system such as stemming, thesaurus search, and weighted search, users can have more efficient results from their query. The system will be adding the root words of the user's query to the query itself which will then be cross-referenced to a thesaurus database to search for any synonyms that will be added to the query. The results will then be arranged by the number of times the word has been searched. Online queries will also be added to the results for additional references. Users showed notable increases in efficiency and usability due to the familiar interface and query expansion techniques incorporated in the system. The simple yet familiar design led to a better user experience. Users also said that they would be more inclined in using the library because of the new system. The incorporation of query expansion techniques gives a notable increase of results to users that in turn gives them a wider range of resources found in the library. Used books mean more knowledge imparted to the users.

Keywords: query expansion, catalog system, stemming, weighted search, usability, thesaurus search

Procedia PDF Downloads 388
1727 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 93
1726 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta

Abstract:

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal

Procedia PDF Downloads 320
1725 The Difference of Learning Outcomes in Reading Comprehension between Text and Film as The Media in Indonesian Language for Foreign Speaker in Intermediate Level

Authors: Siti Ayu Ningsih

Abstract:

This study aims to find the differences outcomes in learning reading comprehension with text and film as media on Indonesian Language for foreign speaker (BIPA) learning at intermediate level. By using quantitative and qualitative research methods, the respondent of this study is a single respondent from D'Royal Morocco Integrative Islamic School in grade nine from secondary level. Quantitative method used to calculate the learning outcomes that have been given the appropriate action cycle, whereas qualitative method used to translate the findings derived from quantitative methods to be described. The technique used in this study is the observation techniques and testing work. Based on the research, it is known that the use of the text media is more effective than the film for intermediate level of Indonesian Language for foreign speaker learner. This is because, when using film the learner does not have enough time to take note the difficult vocabulary and don't have enough time to look for the meaning of the vocabulary from the dictionary. While the use of media texts shows the better effectiveness because it does not require additional time to take note the difficult words. For the words that are difficult or strange, the learner can immediately find its meaning from the dictionary. The presence of the text is also very helpful for Indonesian Language for foreign speaker learner to find the answers according to the questions more easily. By matching the vocabulary of the question into the text references.

Keywords: Indonesian language for foreign speaker, learning outcome, media, reading comprehension

Procedia PDF Downloads 197
1724 The Impact of Artificial Intelligence on Food Nutrition

Authors: Antonyous Fawzy Boshra Girgis

Abstract:

Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.

Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 40
1723 Notions of Social Justice and Educational Globalization: Evaluations of Israeli Teachers and Students across Sectors

Authors: Clara Sabbagh, Nura Resh

Abstract:

The study delves into students’ and teachers’ notions of social justice (social justice judgments or SJJ), examining how they are shaped by both educational globalization and local (nation-state) conditions. Using the Israeli school setting as a case study, we discuss the status of hegemonic Zionism and two influential perspectives of educational globalization – world culture and the post-colonial critique of neo-liberalism – and derive competing hypotheses about the notions of social justice embedded in them. Against this background, we investigate how SJJ are affected by generation – Israeli teachers and students – and by educational sectors that mirror the society’s major divide: Jewish and Israeli Arab. In order to examine these issues, we used a representative sample of 2000 Israeli students, as well as a sample of 800 social studies teachers. We applied MANOVA repeated-measure for examining to what extent SSJ are dependent upon the type of resource that is distributed (repeated measures) and generational (teachers vs students) and sectorial (Jewish vs. Arab) group variables. As expected, findings revealed that the local context does matter. In other words, rather than being consistent with any of the three perspectives above, findings suggest that respondents elaborate the intersection between global and local traditions by creating various forms of mingled notions of social justice. In other words, Israeli (Jewish and Arab) teachers and students can be conceived as agents who play an important role in recreating national heritages and who differently interpret the ways educational globalization impacts their lives.

Keywords: educational globalization, social justice, teachers, Israel, Arab

Procedia PDF Downloads 224
1722 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 111
1721 e-Learning Security: A Distributed Incident Response Generator

Authors: Bel G Raggad

Abstract:

An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.

Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection

Procedia PDF Downloads 437
1720 Innovation in PhD Training in the Interdisciplinary Research Institute

Authors: B. Shaw, K. Doherty

Abstract:

The Cultural Communication and Computing Research Institute (C3RI) is a diverse multidisciplinary research institute including art, design, media production, communication studies, computing and engineering. Across these disciplines it can seem like there are enormous differences of research practice and convention, including differing positions on objectivity and subjectivity, certainty and evidence, and different political and ethical parameters. These differences sit within, often unacknowledged, histories, codes, and communication styles of specific disciplines, and it is all these aspects that can make understanding of research practice across disciplines difficult. To explore this, a one day event was orchestrated, testing how a PhD community might communicate and share research in progress in a multi-disciplinary context. Instead of presenting results at a conference, research students were tasked to articulate their method of inquiry. A working party of students from across disciplines had to design a conference call, visual identity and an event framework that would work for students across all disciplines. The process of establishing the shape and identity of the conference was revealing. Even finding a linguistic frame that would meet the expectations of different disciplines for the conference call was challenging. The first abstracts submitted either resorted to reporting findings, or only described method briefly. It took several weeks of supported intervention for research students to get ‘inside’ their method and to understand their research practice as a process rich with philosophical and practical decisions and implications. In response to the abstracts the conference committee generated key methodological categories for conference sessions, including sampling, capturing ‘experience’, ‘making models’, researcher identities, and ‘constructing data’. Each session involved presentations by visual artists, communications students and computing researchers with inter-disciplinary dialogue, facilitated by alumni Chairs. The apparently simple focus on method illuminated research process as a site of creativity, innovation and discovery, and also built epistemological awareness, drawing attention to what is being researched and how it can be known. It was surprisingly difficult to limit students to discussing method, and it was apparent that the vocabulary available for method is sometimes limited. However, by focusing on method rather than results, the genuine process of research, rather than one constructed for approval, could be captured. In unlocking the twists and turns of planning and implementing research, and the impact of circumstance and contingency, students had to reflect frankly on successes and failures. This level of self – and public- critique emphasised the degree of critical thinking and rigour required in executing research and demonstrated that honest reportage of research, faults and all, is good valid research. The process also revealed the degree that disciplines can learn from each other- the computing students gained insights from the sensitive social contextualizing generated by communications and art and design students, and art and design students gained understanding from the greater ‘distance’ and emphasis on application that computing students applied to their subjects. Finding the means to develop dialogue across disciplines makes researchers better equipped to devise and tackle research problems across disciplines, potentially laying the ground for more effective collaboration.

Keywords: interdisciplinary, method, research student, training

Procedia PDF Downloads 206
1719 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
1718 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
1717 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
1716 Chatbots as Language Teaching Tools for L2 English Learners

Authors: Feiying Wu

Abstract:

Chatbots are computer programs that attempt to engage a human in a dialogue, which originated in the 1960s with MIT's Eliza. However, they have become widespread more recently as advances in language technology have produced chatbots with increasing linguistic quality and sophistication, leading to their potential to serve as a tool for Computer-Assisted Language Learning(CALL). The aim of this article is to assess the feasibility of using two chatbots, Mitsuku and CleverBot, as pedagogical tools for learning English as a second language by stimulating L2 learners with distinct English proficiencies. Speaking of the input of stimulated learners, they are measured by AntWordProfiler to match the user's expected vocabulary proficiency. Totally, there are four chat sessions as each chatbot will converse with both beginners and advanced learners. For evaluation, it focuses on chatbots' responses from a linguistic standpoint, encompassing vocabulary and sentence levels. The vocabulary level is determined by the vocabulary range and the reaction to misspelled words. Grammatical accuracy and responsiveness to poorly formed sentences are assessed for the sentence level. In addition, the assessment of this essay sets 25% lexical and grammatical incorrect input to determine chatbots' corrective ability towards different linguistic forms. Based on statistical evidence and illustration of examples, despite the small sample size, neither Mitsuku nor CleverBot is ideal as educational tools based on their performance through word range, grammatical accuracy, topic range, and corrective feedback for incorrect words and sentences, but rather as a conversational tool for beginners of L2 English.

Keywords: chatbots, CALL, L2, corrective feedback

Procedia PDF Downloads 78
1715 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect

Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy

Abstract:

Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.

Keywords: genetic algorithms, economic dispatch, pattern search

Procedia PDF Downloads 444
1714 An Analysis of Innovative Cloud Model as Bridging the Gap between Physical and Virtualized Business Environments: The Customer Perspective

Authors: Asim Majeed, Rehan Bhana, Mak Sharma, Rebecca Goode, Nizam Bolia, Mike Lloyd-Williams

Abstract:

This study aims to investigate and explore the underlying causes of security concerns of customers emerged when WHSmith transformed its physical system to virtualized business model through NetSuite. NetSuite is essentially fully integrated software which helps transforming the physical system to virtualized business model. Modern organisations are moving away from traditional business models to cloud based models and consequently it is expected to have a better, secure and innovative environment for customers. The vital issue of the modern age race is the security when transforming virtualized through cloud based models and designers of interactive systems often misunderstand privacy and even often ignore it, thus causing concerns for users. The content analysis approach is being used to collect the qualitative data from 120 online bloggers including TRUSTPILOT. The results and finding provide useful new insights into the nature and form of security concerns of online users after they have used the WHSmith services offered online through their website. Findings have theoretical as well as practical implications for the successful adoption of cloud computing Business-to-Business model and similar systems.

Keywords: innovation, virtualization, cloud computing, organizational flexibility

Procedia PDF Downloads 384