Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7874

Search results for: accuracy improvement

7364 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia

Authors: Sawarni Hasibuan, Rudi Effendi Listyanto

Abstract:

The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.

Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency

Procedia PDF Downloads 324
7363 Effectiveness of Adopting Software Quality Frameworks in Software Organizations: A Qualitative Review

Authors: Sarah K. Amer, Nagwa Badr, Osman Ibrahim, Ahmed Hamad

Abstract:

This paper surveys the effectiveness of software process quality assurance frameworks, with some focus on Capability Maturity Model Integration (CMMI) - a framework that has become widely adopted in software organizations. The importance of quality improvement in software development, and the differences in the outcomes of quality framework implementation between Middle Eastern and North African (MENA-region) countries and non-MENA-region countries are discussed. The greatest challenges met in the MENA region are identified, with particular focus on Egypt and its rising software development industry.

Keywords: software quality, software process improvement, software development methodologies, capability maturity model integration

Procedia PDF Downloads 356
7362 An Intelligent Steerable Drill System for Orthopedic Surgery

Authors: Wei Yao

Abstract:

A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.

Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking

Procedia PDF Downloads 168
7361 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 194
7360 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 192
7359 A Method to Enhance the Accuracy of Digital Forensic in the Absence of Sufficient Evidence in Saudi Arabia

Authors: Fahad Alanazi, Andrew Jones

Abstract:

Digital forensics seeks to achieve the successful investigation of digital crimes through obtaining acceptable evidence from digital devices that can be presented in a court of law. Thus, the digital forensics investigation is normally performed through a number of phases in order to achieve the required level of accuracy in the investigation processes. Since 1984 there have been a number of models and frameworks developed to support the digital investigation processes. In this paper, we review a number of the investigation processes that have been produced throughout the years and introduce a proposed digital forensic model which is based on the scope of the Saudi Arabia investigation process. The proposed model has been integrated with existing models for the investigation processes and produced a new phase to deal with a situation where there is initially insufficient evidence.

Keywords: digital forensics, process, metadata, Traceback, Sauid Arabia

Procedia PDF Downloads 360
7358 Improvement of the Calciferous Minerals Floatability through the Application of High-Power Electromagnetic Pulses

Authors: Valentine A. Chanturiya, Igor Zh. Bunin, Maria V. Ryazantseva

Abstract:

The modification of structural and chemical properties of fluorite, scheelite and calcite under the impact of high-power electromagnetic pulses (HPEMP-treatment) were studied with the help of adsorption of acid-base indicators and atomic – force microscopy (AFM). The HPEMP-treatment during the space of 30 seconds resulted in the intensification of fluorite surface the electron-donating ability and acceptor properties of calcite and scheelite surfaces. High-power electromagnetic treatment of the single minerals resulted in the improvement of the calciferous minerals floatability. The rising of the scheelite recovery is 10 – 12%, fluorite – 5 – 6%, calcite – 7 – 8%.

Keywords: calcite, fluorite, scheelite, high power electromagnetic pulses, floatability

Procedia PDF Downloads 288
7357 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 307
7356 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 421
7355 An Evaluation of the Lae City Road Network Improvement Project

Authors: Murray Matarab Konzang

Abstract:

Lae Port Development Project, Four Lane Highway and other development in the extraction industry which have direct road link to Lae City are predicted to have significant impact on its road network system. This paper evaluates Lae roads improvement program with forecast on planning, economic and the installation of bypasses to ease congestion, effective and convenient transport service for bulk goods and reduce travel time. Land-use transportation study and plans for local area traffic management scheme will be considered. City roads are faced with increased number of traffic and some inadequate road pavement width, poor transport plans, and facilities to meet this transportation demand. Lae also has drainage system which might not hold a 100 year flood. Proper evaluation, plan, design and intersection analysis is needed to evaluate road network system thus recommend improvement and estimate future growth. Repetitive and cyclic loading by heavy commercial vehicles with different axle configurations apply on the flexible pavement which weakens and tear the pavement surface thus small cracks occur. Rain water seeps through and overtime it creates potholes. Effective planning starts from experimental research and appropriate design standards to enable firm embankment, proper drains and quality pavement material. This paper will address traffic problems as well as road pavement, capacities of intersections, and pedestrian flow during peak hours. The outcome of this research will be to identify heavily trafficked road sections and recommend treatments to reduce traffic congestions, road classification, and proposal for bypass routes and improvement. First part of this study will describe transport or traffic related problems within the city. Second part would be to identify challenges imposed by traffic and road related problems and thirdly to recommend solutions after the analyzing traffic data that will indicate current capacities of road intersections and finally recommended treatment for improvement and future growth.

Keywords: Lae, road network, highway, vehicle traffic, planning

Procedia PDF Downloads 359
7354 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
7353 Evaluate the Possibility of Using ArcGIS Basemaps as GCP for Large Scale Maps

Authors: Jali Octariady, Ida Herliningsih, Ade K. Mulyana, Annisa Fitria, Diaz C. K. Yuwana

Abstract:

Awareness of the importance large-scale maps for development of a country is growing in all walks of life, especially for governments in Indonesia. Various parties, especially local governments throughout Indonesia demanded for immediate availability the large-scale maps of 1:5000 for regional development. But in fact, the large-scale maps of 1:5000 is only available less than 5% of the entire territory of Indonesia. Unavailability precise GCP at the entire territory of Indonesia is one of causes of slow availability the large scale maps of 1:5000. This research was conducted to find an alternative solution to this problem. This study was conducted to assess the accuracy of ArcGIS base maps coordinate when it shall be used as GCP for creating a map scale of 1:5000. The study was conducted by comparing the GCP coordinate from Field survey using GPS Geodetic than the coordinate from ArcGIS basemaps in various locations in Indonesia. Some areas are used as a study area are Lombok Island, Kupang City, Surabaya City and Kediri District. The differences value of the coordinates serve as the basis for assessing the accuracy of ArcGIS basemaps coordinates. The results of the study at various study area show the variation of the amount of the coordinates value given. Differences coordinate value in the range of millimeters (mm) to meters (m) in the entire study area. This is shown the inconsistency quality of ArcGIS base maps coordinates. This inconsistency shows that the coordinate value from ArcGIS Basemaps is careless. The Careless coordinate from ArcGIS Basemaps indicates that its cannot be used as GCP for large-scale mapping on the entire territory of Indonesia.

Keywords: accuracy, ArcGIS base maps, GCP, large scale maps

Procedia PDF Downloads 374
7352 Tuning Cubic Equations of State for Supercritical Water Applications

Authors: Shyh Ming Chern

Abstract:

Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and, reasonable accuracy are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, They often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.

Keywords: equation of state, EoS, supercritical water, SCW

Procedia PDF Downloads 537
7351 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 272
7350 Ethical Utility of Artificial Intelligence in Education

Authors: Layan Kateb, Jawaher Ragban, Rawia Alamri, Rewaa Alhazmi

Abstract:

This paper evaluates user satisfaction with the AI functionality of Coconote, an innovative app designed to transform raw input -documents, voice recordings, and video recordings- into structured study materials such as flashcards, study guides, and transcripts. Leveraging AI-driven natural language processing and summarization algorithms, Coconote aims to streamline the study process by providing personalized, accessible, and accurate learning tools. To measure user satisfaction, we conducted a survey among 20 participants, including students, educators, and professionals, who tested the app’s core features over a two-week period. The survey assessed criteria such as ease of use, accuracy of generated materials, and perceived value in enhancing productivity. Results indicate high satisfaction levels with the app’s ability to produce coherent and concise outputs, with 83% of respondents reporting improved study efficiency. However, feedback highlighted areas for improvement, including occasional inaccuracies in transcription and customization limitations in flashcard formatting. This study demonstrates the potential of AI to transform learning methods and identifies key areas for refinement in user-centric design. Coconote represents a step forward in leveraging AI to enhance educational technology

Keywords: tools for students, artificial intelligence in education, AI study tool, ethical AI tools

Procedia PDF Downloads 0
7349 The Effect of Pulsator on Washing Performance in a Front-Loading Washer

Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic

Abstract:

The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.

Keywords: front-loading washer, mechanical force, fabric movement, pulsator, time-saving

Procedia PDF Downloads 262
7348 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575
7347 Forward Stable Computation of Roots of Real Polynomials with Only Real Distinct Roots

Authors: Nevena Jakovčević Stor, Ivan Slapničar

Abstract:

Any polynomial can be expressed as a characteristic polynomial of a complex symmetric arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen as real. By using accurate forward stable algorithm for computing eigen values of real symmetric arrowhead matrices we derive a forward stable algorithm for computation of roots of such polynomials in O(n^2 ) operations. The algorithm computes each root to almost full accuracy. In some cases, the algorithm invokes extended precision routines, but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials. Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method.

Keywords: roots of polynomials, eigenvalue decomposition, arrowhead matrix, high relative accuracy

Procedia PDF Downloads 418
7346 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 217
7345 Discovering Word-Class Deficits in Persons with Aphasia

Authors: Yashaswini Channabasavegowda, Hema Nagaraj

Abstract:

Aim: The current study aims at discovering word-class deficits concerning the noun-verb ratio in confrontation naming, picture description, and picture-word matching tasks. A total of ten persons with aphasia (PWA) and ten age-matched neurotypical individuals (NTI) were recruited for the study. The research includes both behavioural and objective measures to assess the word class deficits in PWA. Objective: The main objective of the research is to identify word class deficits seen in persons with aphasia, using various speech eliciting tasks. Method: The study was conducted in the L1 of the participants, considered to be Kannada. Action naming test and Boston naming test adapted to the Kannada version are administered to the participants; also, a picture description task is carried out. Picture-word matching task was carried out using e-prime software (version 2) to measure the accuracy and reaction time with respect to identification verbs and nouns. The stimulus was presented through auditory and visual modes. Data were analysed to identify errors noticed in the naming of nouns versus verbs, with respect to the Boston naming test and action naming test and also usage of nouns and verbs in the picture description task. Reaction time and accuracy for picture-word matching were extracted from the software. Results: PWA showed a significant difference in sentence structure compared to age-matched NTI. Also, PWA showed impairment in syntactic measures in the picture description task, with fewer correct grammatical sentences and fewer correct usage of verbs and nouns, and they produced a greater proportion of nouns compared to verbs. PWA had poorer accuracy and lesser reaction time in the picture-word matching task compared to NTI, and accuracy was higher for nouns compared to verbs in PWA. The deficits were noticed irrespective of the cause leading to aphasia.

Keywords: nouns, verbs, aphasia, naming, description

Procedia PDF Downloads 103
7344 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 313
7343 Wire Localization Procedures in Non-Palpable Breast Cancers: An Audit Report and Review of Literature

Authors: Waqas Ahmad, Eisha Tahir, Shahper Aqeel, Imran Khalid Niazi, Amjad Iqbal

Abstract:

Background: Breast conservation surgery applies a number of techniques for accurate localization of lesions. Wire localization remains the method of choice in non-palpable breast cancers post-neoadjuvant chemotherapy. Objective: The aim of our study was to determine the accuracy of wire localization procedures in our department and compare it with internationally set protocols as per the Royal College of Radiologists. Post wire mammography, as well as the margin status of the postoperative specimen, assessed the accuracy of the procedure. Methods: We retrospectively reviewed the data of 225 patients who presented to our department from May 2014 to June 2015 post neoadjuvant chemotherapy with non-palpable cancers. These patients are candidates for wire localized lumpectomies either under ultrasound or stereotactic guidance. Metallic marker was placed in all the patients at the time of biopsy. Post wire mammogram was performed in all the patients and the distance of the wire tip from the marker was calculated. The presence or absence of the metallic clip in the postoperative specimen, as well as the marginal status of the postoperative specimen, was noted. Results: 157 sonographic and 68 stereotactic wire localization procedures were performed. 95% of the wire tips were within 1 cm of the metallic marker. Marginal status was negative in 94% of the patients in histopathological specimen. Conclusion: Our audit report declares more than 95% accuracy of image guided wire localization in successful excision of non-palpable breast lesions.

Keywords: breast, cancer, non-palpable, wire localization

Procedia PDF Downloads 312
7342 Cannabis Use Reported by Patients in an Academic Medical Practice

Authors: Siddhant Yadav, Ann Vincent, Sanjeev Nanda, Karen M. Fischer, Jessica A. Wright

Abstract:

Statement of the Problem: Despite the growing popularity of cannabis in the general population, there are several unknowns regarding its use, specific reasons for use, patient’s choice of products, health benefits, and adverse effects. The aim of our study was to evaluate patient-reported information related to cannabis use that was recorded in the electronic medical records. Methodology & Theoretical Orientation: We manually reviewed the electronic medical records of cannabis users who were part of a large pharmacogenomic study. Data abstracted included demographics, level of education, concurrent alcohol and tobacco use, type of cannabis utilized, formulation, indication, symptomatic improvement, or adverse effects reported. Following this, we did a descriptive statistical analysis. Findings: Our sample of 164 cannabis users were predominantly female (73.2%); 66% of users reported using cannabis for medical indications. Of the 109 patients who recorded information pertaining to alcohol/tobacco use, two-thirds of cannabis users reported concurrent use of alcohol, and about half of them were former or current tobacco users. The mean age of cannabis use was 66 years. Regarding the type of cannabis, 34.1% reported using marijuana, 32.3% reported CBD use, 1.8% reported using THC, and 1.2% reported using Marinol. Oral formulations (capsules, oils, suspensions, brownies, cakes, and tea) were the most common route (44 %). Indications for use included chronic pain (n=76), anxiety (n=9), counteracting side effects of chemotherapy (n=4), and palliative reasons (n=2). Fifty-eight of the 76 users endorsed improvement in chronic pain (80%), 5 users reported improvement in anxiety, and 2 reported improvement in side effects of chemotherapy. Conclusion & Significance: The majority of our cannabis users were Caucasian females, and there was a high likelihood of coinciding use of alcohol/tobacco in patients using cannabis. Most of our patients used the oral formulation for chronic pain. Importantly, a considerable number of patients reported improvements in chronic pain, anxiety, and side effects of chemotherapy.

Keywords: cannabis use, adverse effects, medical practice, indications

Procedia PDF Downloads 93
7341 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms

Procedia PDF Downloads 484
7340 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 482
7339 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 129
7338 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes

Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel

Abstract:

This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.

Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes

Procedia PDF Downloads 137
7337 Time Efficient Color Coding for Structured-Light 3D Scanner

Authors: Po-Hao Huang, Pei-Ju Chiang

Abstract:

The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision.

Keywords: gray-code, structured light scanner, 3D shape acquisition, 3D reconstruction

Procedia PDF Downloads 461
7336 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP

Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang

Abstract:

Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.

Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species

Procedia PDF Downloads 68
7335 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 101