Search results for: online learning activities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14375

Search results for: online learning activities

9035 Formal Development of Electronic Identity Card System Using Event-B

Authors: Tomokazu Nagata, Jawid Ahmad Baktash

Abstract:

The goal of this paper is to explore the use of formal methods for Electronic Identity Card System. Nowadays, one of the core research directions in a constantly growing distributed environment is the improvement of the communication process. The responsibility for proper verification becomes crucial. Formal methods can play an essential role in the development and testing of systems. The thesis presents two different methodologies for assessing correctness. Our first approach employs abstract interpretation techniques for creating a trace based model for Electronic Identity Card System. The model was used for building a semi decidable procedure for verifying the system model. We also developed the code for the eID System and can cover three parts login to system sending of Acknowledgment from user side, receiving of all information from server side and log out from system. The new concepts of impasse and spawned sessions that we introduced led our research to original statements about the intruder’s knowledge and eID system coding with respect to secrecy. Furthermore, we demonstrated that there is a bound on the number of sessions needed for the analysis of System.Electronic identity (eID) cards promise to supply a universal, nation-wide mechanism for user authentication. Most European countries have started to deploy eID for government and private sector applications. Are government-issued electronic ID cards the proper way to authenticate users of online services? We use the eID project as a showcase to discuss eID from an application perspective. The new eID card has interesting design features, it is contact-less, it aims to protect people’s privacy to the extent possible, and it supports cryptographically strong mutual authentication between users and services. Privacy features include support for pseudonymous authentication and per service controlled access to individual data items. The article discusses key concepts, the eID infrastructure, observed and expected problems, and open questions. The core technology seems ready for prime time and government projects deploy it to the masses. But application issues may hamper eID adoption for online applications.

Keywords: eID, event-B, Pro-B, formal method, message passing

Procedia PDF Downloads 238
9034 Factors Affecting Households' Decision to Allocate Credit for Livestock Production: Evidence from Ethiopia

Authors: Kaleb Shiferaw, Berhanu Geberemedhin, Dereje Legesse

Abstract:

Access to credit is often viewed as a key to transform semi-subsistence smallholders into market oriented producers. However, only a few studies have examined factors that affect farmers’ decision to allocate credit on farm activities in general and livestock production in particular. A trivariate probit model with double selection is employed to identify factors that affect farmers’ decision to allocate credit on livestock production using data collected from smallholder farmers in Ethiopia. After controlling for two sample selection bias – taking credit for the production season and decision to allocate credit on farm activities – land ownership and access to a livestock centered extension service are found to have a significant (p<0.001) effect on farmers decision to use credit for livestock production. The result showed farmers with large land holding, and access to a livestock centered extension services are more likely to utilize credit for livestock production. However since the effect of land ownership squared is negative the effect of land ownership for those who own a large plot of land lessens. The study highlights the fact that improving access to credit does not automatically translate into more productive households. Improving farmers’ access to credit should be followed by a focused extension services.

Keywords: livestock production, credit access, credit allocation, household decision, double sample selection

Procedia PDF Downloads 330
9033 Fostering Creativity in Education Exploring Leadership Perspectives on Systemic Barriers to Innovative Pedagogy

Authors: David Crighton, Kelly Smith

Abstract:

The ability to adopt creative pedagogical approaches is increasingly vital in today’s educational landscape. This study examines the institutional barriers that hinder educators, in the UK, from embracing such innovation, focusing specifically on the experiences and perspectives of educational leaders. Current literature primarily focuses on the challenges that academics and teachers encounter, particularly highlighting how management culture and audit processes negatively affect their ability to be creative in classrooms and lecture theatres. However, this focus leaves a gap in understanding management perspectives, which is crucial for providing a more holistic insight into the challenges encountered in educational settings. To explore this gap, we are conducting semi-structured interviews with senior leaders across various educational contexts, including universities, schools, and further education colleges. This qualitative methodology, combined with thematic analysis, aims to uncover the managerial, financial, and administrative pressures these leaders face in fostering creativity in teaching and supporting professional learning opportunities. Preliminary insights indicate that educational leaders face significant barriers, such as institutional policies, resource limitations, and external performance indicators. These challenges create a restrictive environment that stifles educators' creativity and innovation. Addressing these barriers is essential for empowering staff to adopt more creative pedagogical approaches, ultimately enhancing student engagement and learning outcomes. By alleviating these constraints, educational leaders can cultivate a culture that fosters creativity and flexibility in the classroom. These insights will inform practical recommendations to support institutional change and enhance professional learning opportunities, contributing to a more dynamic educational environment. In conclusion, this study offers a timely exploration of how leadership can influence the pedagogical landscape in a rapidly evolving educational context. The research seeks to highlight the crucial role that educational leaders play in shaping a culture of creativity and adaptability, ensuring that institutions are better equipped to respond to the challenges of contemporary education.

Keywords: educational leadership, professional learning, creative pedagogy, marketisation

Procedia PDF Downloads 21
9032 Knowledge Management Strategies within a Corporate Environment of Papers

Authors: Daniel J. Glauber

Abstract:

Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.

Keywords: knowledge transfer, management, knowledge management strategies, organizational learning, codification

Procedia PDF Downloads 444
9031 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning

Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.

Abstract:

Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.

Keywords: image processing, python, convolution neural network (CNN), machine learning

Procedia PDF Downloads 83
9030 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments

Authors: Hediye Saglam

Abstract:

This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.

Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments

Procedia PDF Downloads 513
9029 Agricultural Water Consumption Estimation in the Helmand Basin

Authors: Mahdi Akbari, Ali Torabi Haghighi

Abstract:

Hamun Lakes, located in the Helmand Basin, consisting of four water bodies, were the greatest (>8500 km2) freshwater bodies in Iran plateau but have almost entirely desiccated over the last 20 years. The desiccation of the lakes caused dust storm in the region which has huge economic and health consequences on the inhabitants. The flow of the Hirmand (or Helmand) River, the most important feeding river, has decreased from 4 to 1.9 km3 downstream due to anthropogenic activities. In this basin, water is mainly consumed for farming. Due to the lack of in-situ data in the basin, this research utilizes remote-sensing data to show how croplands and consequently consumed water in the agricultural sector have changed. Based on Landsat NDVI, we suggest using a threshold of around 0.35-0.4 to detect croplands in the basin. Croplands of this basin has doubled since 1990, especially in the downstream of the Kajaki Dam (the biggest dam of the basin). Using PML V2 Actual Evapotranspiration (AET) data and considering irrigation efficiency (≈0.3), we estimate that the consumed water (CW) for farming. We found that CW has increased from 2.5 to over 7.5 km3 from 2002 to 2017 in this basin. Also, the annual average Potential Evapotranspiration (PET) of the basin has had a negative trend in the recent years, although the AET over croplands has an increasing trend. In this research, using remote sensing data, we covered lack of data in the studied area and highlighted anthropogenic activities in the upstream which led to the lakes desiccation in the downstream.

Keywords: Afghanistan-Iran transboundary Basin, Iran-Afghanistan water treaty, water use, lake desiccation

Procedia PDF Downloads 135
9028 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning

Authors: Ioanna Taouki, Marie Lallier, David Soto

Abstract:

Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.

Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition

Procedia PDF Downloads 154
9027 A Framework for Consumer Selection on Travel Destinations

Authors: J. Rhodes, V. Cheng, P. Lok

Abstract:

The aim of this study is to develop a parsimonious model that explains the effect of different stimulus on a tourist’s intention to visit a new destination. The model consists of destination trust and interest as the mediating variables. The model was tested using two different types of stimulus; both studies empirically supported the proposed model. Furthermore, the first study revealed that advertising has a stronger effect than positive online reviews. The second study found that the peripheral route of the elaboration likelihood model has a stronger influence power than the central route in this context.

Keywords: advertising, electronic word-of-mouth, elaboration likelihood model, intention to visit, trust

Procedia PDF Downloads 459
9026 Exploration of Influential Factors on First Year Architecture Students’ Productivity

Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani

Abstract:

The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.

Keywords: architecture education, basic design studio, educational method, forms creation skill

Procedia PDF Downloads 380
9025 Antioxidant Effects of Regular Aerobic Exercise in Postmenopausal Women with Type 2 Diabetes Mellitus

Authors: Parvin Farzanegi

Abstract:

Background: Diabetes is a metabolic disorder associated with increased free radicals and oxidative stress. The evidence indicates that physical inactivity is a modifiable behavioral risk factor for a wide range of chronic disorders such as diabetes mellitus. We investigated the effects of eight-week aerobic exercise on some antioxidant enzyme activities in postmenopausal women with type 2 diabetes mellitus (T2DM). Methods: sixteen sedentary postmenopausal women with T2DM were randomly assigned to the control (n=8; CG) and exercise group (n=8; EG). The exercise consisted of progressive aerobic training at a moderate intensity (50-70% of the maximum heart rate), for 25-60 min/day, and 3 days/week for 8 weeks. Age, sex, and body mass index were similar in the two groups. Antioxidant status was evaluated by measuring the superoxide dismutase (SOD) and catalase (CAT) activity. Also levels of malondialdehyde (MDA) as an index of lipid peroxidation and glucose in the plasma were measured before and after the intervention. Results: Following the 8 weeks of exercise training, the plasma MDA and glucose levels were significantly reduced in EG compared to CG (P=0.001 and P=0.011 respectively). However, SOD (P=0.017) and CAT (P=0.011) activities were increased in EG compared to CG. Conclusion: The present study suggests regular aerobic exercise appears can exert protective effects against oxidative stress due to its ability to increase antioxidant defense and glucose control in postmenopausal women with T2DM.

Keywords: aerobic exercise, antioxidant, diabetes mellitus, type 2

Procedia PDF Downloads 177
9024 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 67
9023 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase

Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He

Abstract:

Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.

Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification

Procedia PDF Downloads 317
9022 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 41
9021 Wild Rice (Zizania sp.): A Potential Source for Functional Foods and Nutraceuticals

Authors: Farooq Anwar, Gokhan Zengin, Khalid M. Alkharfy

Abstract:

Wild rice (Zizania sp.) is an annual cross-pollinated, emergent, aquatic grass that mainly grows naturally in the Great Lakes region of the North America. The nutritional quality attributes of wild rice are superior to the conventional brown rice (Oryza sativa L.) in terms of higher contents of important minerals (especially phosphorous, potassium, magnesium and calcium), B-complex vitamins, vitamin E and amino acids. In some parts of the world, wild rice is valued as a primary food source. The lipids content of wild rice is reported to be low in the range of 0.7 and 1.1%, however, the lipids are recognized as a rich source of polyunsaturated fatty acids (including linoleic and α-linolenic acid) and phytosterols in addition to containing reasonably good amount of tocols. Besides, wild rice is reported to contain an appreciable amount of high-value compounds such as phenolics with antioxidant properties. Presence of such nutritional bioactives contributes towards medicinal benefits and multiple biological activities of this specialty rice. The present lecture is mainly designed to focus on the detailed nutritional attributes, profile of high-value bioactive components and pharmaceutical/biological activities of wild rice leading to exploring functional food and nutraceutical potential of this food commodity.

Keywords: alpha-linolenic acid, phenolics, phytosterols, tocols, wild rice lipids

Procedia PDF Downloads 512
9020 Health Benefit and Mechanism from Green Open Space: A Pathway to Connect Health to Design and Planning

Authors: Ming Ma, Rui Li

Abstract:

In the highly urbanized district, green open space is playing an important role in human’s health and wellbeing as a physical, aesthetic and natural environment resources. The aim of this paper is to close this gap through providing a comprehensive, qualitative meta-analysis of existing studies related to this issue. A systematic scoping of current quantitative research is conducted which mostly focused on cross-sectional survey and experimental studies. Health benefits from contact with green open space could be categorized into physical health, psychological health and social wellbeing. Mechanism for the health related to green open space could be clearly identified with the regard to natural restoration, physical activities and social capital. These results indicate a multiple pathways framework between the health benefits and mechanism. In order to support design and planning, the most evident relationship was picked up that people could psychologically benefit from green open space through outdoors physical activities. Additionally, three design and planning strategies are put forward. Various and multi-level contacts with green open space would be considered as an explanation of the pathway results and tie to bridge the health to design and planning. There is a need to carry out long-term research emphasizing on causal relationship between health and green open space through excluding cofounding factors such as self-selection.

Keywords: urban green open space, planning and design, health benefit, mechanism, pathway framework

Procedia PDF Downloads 325
9019 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 107
9018 Increasing Cervical Screening Uptake during the Covid-19 Pandemic at Lakeside Healthcare, Corby, UK

Authors: Devyani Shete, Sudeep Rai

Abstract:

Background: The COVID-19 pandemic has caused one of the highest disruptions to the NHS (National Health Service), especially to the fundamental cervical cancer screening service. To prioritize screening response effectively, it is vital to understand the underlying disease risks amongst groups of women who are less likely to resume their screening/follow up at General Practices. The current government target is to have>=80% of women have an adequate test within the previous 3.5 years (ages 25-49) or 5.5 years (ages 50-64). Aims/Objectives: To increase the number of eligible people aged 25-49 attending cervical screening by 5% at Lakeside Healthcare (a General Practice in Corby). Methods: An online survey was posted on the Lakeside Healthcare website to find out what the barriers towards cervical screening were. It was apparent that patients needed more information catered to their responses. 6 informational videos and a “Cervical Screening Guide” were created for Lakeside patients about cervical screening, which were posted on the Healthcare website. Lakeside also started sending reminder texts to those eligible, with a link to a booking form. Results: On 18th January 2022, 69.7% of patients aged 25-49 years (7207) had an adequate cervical screening test in the last 3.5 years. There were 80 total responders to the online survey. In response to “which of the following are reasons why you have not attended screening”, 30% ticked “I kept putting it off/did not get around to it,” and 13% ticked “I was worried it would be painful or daunting.” In response to “which of the following would make you more likely to book an appointment”, 23% ticked “More detailed explanations of what the risks are if I don’t have screening,” and 20% ticked “I would like more information about the test and what the smear entails.” 10% of responders had previous trauma, whilst 28% of responders said the pandemic had impacted them getting a smear. Survey results were used to carry out interventions to increase smear uptake. On 23rdMarch 2022 (after a 2-month period), 75%of patients aged 25-49 (7119) attended the screening, which was a 5.3% increase from January. Discussion/Conclusion: The survey was vital in carrying out the exact interventions that were required for patients to increase screening uptake, as it is important to know what the populations’ needs are in order to create personalized invitations. This helps to optimise response during a pandemic. A HPV self-sample kit at home could be a popular method of dealing with further outbreaks.

Keywords: gynaecology, cervical screening, public health, COVID-19

Procedia PDF Downloads 156
9017 Cocoa Stimulates the Production Bioactive Components of Lactobacillus Casei and Competitively Excludes Foodborne Pathogens

Authors: Mengfei Peng, Serajus Salaheen, Debabrata Biswas

Abstract:

Lactobacillus casei found in the human intestine and mouth is commonly applied for dairy production. Recently, it was found that some byproducts produced by Lactobacillus exhibited antimicrobial activities against multiple bacteria. Meanwhile, introduction of prebiotic-like foods (e.g. cocoa) or probiotics or both of them as food supplements in human diets as well as in farm animal feeds is believed to be an effective ways in control/reduce the colonization of foodborne bacterial pathogens infection in the gut environment. We hypothesized that cocoa may stimulate the production antimicrobial components of Lactobacillus casei and may potentially inhibit/reduce the colonization and infection of foodborne bacterial pathogens in the gut. Mixed culture of L. casei (LC) with enterohemorrhagic E. coli EDL933 (EHEC), Salmonella Typhimurium LT2 (ST), or Listeria monocytogenes LM2 (LM) showed that LC could competitively exclude (100%) them within 72 h. Further, investigation of cell-free culture supernatant (CFCS) revealed that the antimicrobial effects of LC came from CFCS. CFCS of LC eliminated (100%) EHEC, ST, and LM within 72 h, and 2 h CFCS treatment increased the hydrophobicity of EHEC (5.10 folds), ST (8.48 folds), and LM (2.03 folds). In addition, LC cells exhibited more inhibitive effects than CFCS on cell adhesive and invasive activities of EHEC (52.14% & 90.45%), ST (66.89% & 93.83%), and LM (61.10% & 83.40%). Two clusters of poly-peptides in CFCS were identified by SDS-PAGE, the molecular weights of which are ≈5 KD and 40-45 KD. LC CFCS with overnight growth in the presence of 3% strengthened all of the antimicrobial activities (growth inhibition, outer membrane disruption, and cell infective ability reduction). Liquid chromatography/Mass spectrometry analysis detected 5 unique components in class of flavonoids in LC CFCS with overnight 3% cocoa supplement. Furthermore, qPCR results showed that CFCSs up-regulated the expression level of genes responsible for flagellin synthesis and motility, but down-regulated genes for specific binding and invasion-associated proteins synthesis. The stimulatory effects of cocoa in producing bioactive components of probiotics may aid prevention of foodborne illness caused by major foodborne enteric bacterial pathogens.

Keywords: foodborne pathogens, probiotics, prebiotics, pathogen exclusion

Procedia PDF Downloads 440
9016 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification

Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos

Abstract:

Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.

Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology

Procedia PDF Downloads 151
9015 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 38
9014 Blue Nature-Based Tourism to Enhance Sustainable Development in Pakistan Coastal Areas

Authors: Giulia Balestracci

Abstract:

Pakistan is endowed with diversified natural capital spanning along the 1000-kilometer-long coastline, shared by the coastal provinces of Sindh and Balochistan. It includes some of the most diverse, extensive, and least disturbed reef areas in the Indian Ocean. Pakistani marine and coastal ecosystems are fundamental for the social and economic well-being of the region. They support economic activities such as fishing, shrimp farming, tourism, and shipping, which contribute to income, food security, and the livelihood of millions of people. The coastal regions of Sindh and Balochistan are rich in natural resources and diverse ecosystems, and host also rural coastal communities that have been the keepers of rich cultural legacies and pristine natural landscapes. However, significant barriers hinder tourism development, such as the daunting socio-economic challenges, including the post-COVID-19 scenario, forced migration, institutional gaps, and the ravages of climate change. Pakistan holds immense potential for the tourism sector development within the framework of a sustainable blue economy, thereby fostering greener economic growth and employment opportunities, securing financing for the protection and conservation of its coastal and marine natural assets. Based on the assessment of Pakistan’s natural and cultural coastal and maritime tourism resources, a deep study of the regulatory and institutional aspects of the tourism sector in the country accompanied by the SWOT analysis and accompanied by an in-depth interview with a member of the Pakistan National Tourism Coordination Board (NTCB). A market analysis has been developed, and Lao PDR, Thailand, and Indonesia’s ecotourism development have been analyzed under a comparative analysis length to recommend some nature-based tourism activities for the sustainable development of the coastal areas in Pakistan. Nature-based tourism represents a win-win option as it uses economic incentives for the protection and cultural uses of natural resources. This article stresses the importance of nature-based activities for blue tourism, aligning conservation with developmental goals to safeguard natural resources and cultural heritage, all while fostering economic prosperity.

Keywords: blue tourism, coastal Pakistan, nature-based tourism, sustainable blue economy, sustainable development

Procedia PDF Downloads 88
9013 Use of Social Networks and Mobile Technologies in Education

Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský

Abstract:

Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.

Keywords: social networks, motivation, e-learning, mobile technology

Procedia PDF Downloads 317
9012 Accessing the 'No-Harm' Principle of Protection of the Mekong River’s Environment

Authors: Hang Thuy Tran, Hanh Hong Pham, Ha Thanh Hoa

Abstract:

From 2009 up to now, the water quantity and water quality of the Mekong River, located in the South of Vietnam, have been significantly reduced. The phenomenon happened as a result of climate change and human activities. The Mekong River is an international source of water, flowing across the borders of 6 countries, with Vietnam downstream. Activities to block the flow or build dams to construct hydroelectricity or diversion in upstream countries are either the direct cause or the risk of further deterioration of the water quality and quantity of the Mekong River, as evidenced by two phenomena which are a saline intrusion and transboundary water pollution. The protection of the crucial source of water is done through bilateral and multilateral cooperation mechanisms, notably the Mekong River Commission, established by members of the Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin 1995. In this document, under Article 7, the 'no-harm' principle requires member states to take appropriate measures to prevent causing substantial damage to other member states. This principle has been practiced through the work of a number of committees established by the commission. However, the content of the rules is undetailed, lacks an implementation monitoring mechanism, and has an unreasonable dispute solution. With such difficulties, the provisions in the principle of no-harm are not adequate to protect the Mekong River's water resources in the current context.

Keywords: no-harm principle, transboundary water pollution, Mekong Commission, international source of water

Procedia PDF Downloads 195
9011 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6

Authors: Yaser Miaji, Mohammed Aloryani

Abstract:

The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.

Keywords: traffic classification, IPv6, internet, application categorization

Procedia PDF Downloads 568
9010 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 96
9009 The Effect of a Probiotic: Leuconostoc mesenteroides B4, and Its Products on Growth Performance and Disease Resistance of Orange-Spotted Grouper Epinephelus coioides

Authors: Mei-Ying Huang, Huei-Jen Ju, Liang-Wei Tseng, Chin-Jung Hsu

Abstract:

The aim of this study was to investigate a probiotic, Leuconostoc mesenteroides B4, and its products, isomaltooligosaccharide and dextran, on growth performance, digestive enzymes, immune responses, and pathogen resistance of spotted grouper Epinephelus coioides. The grouper were fed control and diets supplemented with L. mesenteroides B4 (107 CFU/g), isomaltooligosaccharide (0.15%), isomaltooligosaccharide (0.15%) + L. mesenteroides B4 (107 CFU/g) (I + B4), and dextran (0.15%) + L. mesenteroides B4 (107 CFU/g) (D + B4) for 8 weeks. The result showed that final weights and percent weight gains of the grouper fed diets supplemented with L. mesenteroides B4 and I + B4 were significantly higher than that of the control group (p < 0.05). The activities of digestive enzymes in the grouper fed with I + B4 were significantly higher than the control group (p < 0.05), too. After challenge with Vibrio harveyi, the enzyme activities of antiprotease and lysozyme as well as of respiratory burst of the fish fed with I + B4 and D + B4 were significantly higher than that of the control group (p < 0.05). The grouper fed with the both diets also had higher survival rates than that of the control group after the challenge. Overall, the study indicated that feeding diets supplemented with L. mesenteroides B4, and its products, isomaltooligosaccharide, and dextran could be an effective method for enhancing the growth performance and disease resistance in orange-spotted grouper.

Keywords: orange-spotted grouper, probiotic Leuconostoc mesenteroides B4, isomaltooligosaccharide, dextran, growth performance, pathogen resistance

Procedia PDF Downloads 270
9008 Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti

Authors: V. Baweja, K. K. Gupta, V. Dubey, C. Keshavam

Abstract:

Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective.

Keywords: plant extract, aedes, dengue, antimicrobial activity

Procedia PDF Downloads 408
9007 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations

Authors: Gianni Jacucci

Abstract:

Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.

Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability

Procedia PDF Downloads 47
9006 Perceived Influence of Information Communication Technology on Empowerment Amongst the College of Education Physical and Health Education Students in Oyo State

Authors: I. O. Oladipo, Olusegun Adewale Ajayi, Omoniyi Oladipupo Adigun

Abstract:

Information Communication Technology (ICT) have the potential to contribute to different facets of educational development and effective learning; expanding access, promoting efficiency, improve the quality of learning, enhancing the quality of teaching and provide important mechanism for the economic crisis. Considering the prevalence of unemployment among the higher institution graduates in this nation, in which much seems not to have been achieved in this direction. In view of this, the purpose of this study is to create an awareness and enlightenment of ICT for empowerment opportunities after school. A self-developed modified 4-likert scale questionnaire was used for data collection among Colleges of Education, Physical and Health Education students in Oyo State. Inferential statistical analysis of chi-square set at 0.05 alpha levels was used to analyze the stated hypotheses. The study concludes that awareness and enlightenment of ICT significantly influence empowerment opportunities and recommended that college of education students should be encouraged on the application of ICT for job opportunity after school.

Keywords: employment, empowerment, information communication technology, physical education

Procedia PDF Downloads 391