Search results for: life-long learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7307

Search results for: life-long learning

2027 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes

Authors: Kevin. S. Badni

Abstract:

Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.

Keywords: augmented reality, history, motivation, technology

Procedia PDF Downloads 169
2026 Usability Assessment of a Bluetooth-Enabled Resistance Exercise Band among Young Adults

Authors: Lillian M. Seo, Curtis L. Petersen, Ryan J. Halter, David Kotz, John A. Batsis

Abstract:

Background: Resistance-based exercises effectively enhance muscle strength, which is especially important in older populations as it reduces the risk of disability. Our group developed a Bluetooth-enabled handle for resistance exercise bands that wirelessly transmits relative force data through low-energy Bluetooth to a local smartphone or similar device. The system has the potential to measure home-based exercise interventions, allowing health professionals to monitor compliance. Its feasibility has already been demonstrated in both clinical and field-based settings, but it remained unclear whether the system’s usability persisted upon repeated use. The current study sought to assess the usability of this system and its users’ satisfaction with repeated use by deploying the device among younger adults to gather formative information that can ultimately improve the device’s design for older adults. Methods: A usability study was conducted in which 32 participants used the above system. Participants executed 10 repetitions of four commonly performed exercises: bicep flexion, shoulder abduction, elbow extension, and triceps extension. Each completed three exercise sessions, separated by at least 24 hours to minimize muscle fatigue. At its conclusion, subjects completed an adapted version of the usefulness, satisfaction, and ease (USE) questionnaire – assessing the system across four domains: usability, satisfaction, ease of use, and ease of learning. The 20-item questionnaire examined how strongly a participant agrees with positive statements about the device on a seven-point Likert scale, with one representing ‘strongly disagree’ and seven representing ‘strongly agree.’ Participants’ data were aggregated to calculate mean response values for each question and domain, effectively assessing the device’s performance across different facets of the user experience. Summary force data were visualized using a custom web application. Finally, an optional prompt at the end of the questionnaire allowed for written comments and feedback from participants to elicit qualitative indicators of usability. Results: Of the n=32 participants, 13 (41%) were female; their mean age was 32.4 ± 11.8 years, and no participants had a physical impairment. No usability questions received a mean score < 5 of seven. The four domains’ mean scores were: usefulness 5.66 ± 0.35; satisfaction 6.23 ± 0.06; ease of use 6.25 ± 0.43; and ease of learning 6.50 ± 0.19. Representative quotes of the open-ended feedback include: ‘A non-rigid strap-style handle might be useful for some exercises,’ and, ‘Would need different bands for each exercise as they use different muscle groups with different strength levels.’ General impressions were favorable, supporting the expectation that the device would be a useful tool in exercise interventions. Conclusions: A simple usability assessment of a Bluetooth-enabled resistance exercise band supports a consistent and positive user experience among young adults. This study provides adequate formative data, assuring the next steps can be taken to continue testing and development for the target population of older adults.

Keywords: Bluetooth, exercise, mobile health, mHealth, usability

Procedia PDF Downloads 120
2025 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model

Authors: Sujay Kotwale, Ramasubba Reddy M.

Abstract:

Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.

Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost

Procedia PDF Downloads 125
2024 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 95
2023 A Nutrient Formulation Affects Brain Myelination in Infants: An Investigative Randomized Controlled Trial

Authors: N. Schneider, M. Bruchhage, M. Hartweg, G. Mutungi, J. O Regan, S. Deoni

Abstract:

Observational neuroimaging studies suggest differences between breast-fed and formula-fed infants in developmental myelination, a key brain process for learning and cognitive development. However, the possible effects of a nutrient formulation on myelin development in healthy term infants in an intervention study have not been investigated. Objective was, therefore, to investigate the efficacy of a nutrient formulation with higher levels of myelin-relevant nutrients as compared to a control formulation with lower levels of the same nutrients on brain myelination and cognitive development in the first 6 months of life. The study is an ongoing randomized, controlled, double-blind, two-center, parallel-group clinical trial with a nonrandomized, non-blinded arm of exclusively breastfed infants. The current findings result from a staged statistical analysis at 6 months; the recruitment and intervention period has been completed for all participants. Follow-up visits at 12, 18 and 24 months are still ongoing. N= 81 enrolled full term, neurotypical infants of both sexes were randomized into either the investigational (N= 42) or the control group (N= 39), and N= 108 children in the breast-fed arm served as a natural reference group. The effect of a blend of docosahexaenoic acid, arachidonic acid, iron, vitamin B12, folic acid as well as sphingomyelin from a uniquely proceed whey protein concentrate enriched in alpha-lactalbumin and phospholipids in an infant nutrition product matrix was investigated. The main outcomes for the staged statistical analyses at 6 months included brain myelination measures derived from MRI. Additional outcomes were brain volume, cognitive development and safety. The full analyses set at 6 months comprised N= 66 infants. Higher levels of myelin-relevant nutrients compared to lower levels resulted in significant differences in myelin structure, volume, and rate of myelination as early as 3 and 6 months of life. The cross-sectional change of means between groups for whole-brain myelin volume was 8.4% for investigational versus control formulation (3.5% versus the breastfeeding reference) group at 3 months and increased to 36.4% for investigational versus control formulation (14.1% versus breastfeeding reference) at 6 months. No statistically significant differences were detected for early cognition scores. Safety findings were largely similar across groups. This is the first pediatric nutritional neuroimaging study demonstrating the efficacy of a myelin nutrient blend on developmental myelination in well-nourished term infants. Myelination is a critical process in learning and development. The effects were demonstrated across the brain, particularly in temporal and parietal regions, known to be functionally involved in sensory, motor and language skills. These first results add to the field of nutritional neuroscience by demonstrating early life nutrition benefits for brain architecture which may be foundational for later cognitive and behavioral outcomes. ClinicalTrials.gov Identifier: NCT03111927 (Infant Nutrition and Brain Development - Full-Text View - ClinicalTrials.gov).

Keywords: brain development, infant nutrition, MRI, myelination

Procedia PDF Downloads 202
2022 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 359
2021 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School

Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya

Abstract:

This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.

Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education

Procedia PDF Downloads 35
2020 Artificial Intelligence for Safety Related Aviation Incident and Accident Investigation Scenarios

Authors: Bernabeo R. Alberto

Abstract:

With the tremendous improvements in the processing power of computers, the possibilities of artificial intelligence will increasingly be used in aviation and make autonomous flights, preventive maintenance, ATM (Air Traffic Management) optimization, pilots, cabin crew, ground staff, and airport staff training possible in a cost-saving, less time-consuming and less polluting way. Through the use of artificial intelligence, we foresee an interviewing scenario where the interviewee will interact with the artificial intelligence tool to contextualize the character and the necessary information in a way that aligns reasonably with the character and the scenario. We are creating simulated scenarios connected with either an aviation incident or accident to enhance also the training of future accident/incident investigators integrating artificial intelligence and augmented reality tools. The project's goal is to improve the learning and teaching scenario through academic and professional expertise in aviation and in the artificial intelligence field. Thus, we intend to contribute to the needed high innovation capacity, skills, and training development and management of artificial intelligence, supported by appropriate regulations and attention to ethical problems.

Keywords: artificial intelligence, aviation accident, aviation incident, risk, safety

Procedia PDF Downloads 27
2019 Instant Fire Risk Assessment Using Artifical Neural Networks

Authors: Tolga Barisik, Ali Fuat Guneri, K. Dastan

Abstract:

Major industrial facilities have a high potential for fire risk. In particular, the indices used for the detection of hidden fire are used very effectively in order to prevent the fire from becoming dangerous in the initial stage. These indices provide the opportunity to prevent or intervene early by determining the stage of the fire, the potential for hazard, and the type of the combustion agent with the percentage values of the ambient air components. In this system, artificial neural network will be modeled with the input data determined using the Levenberg-Marquardt algorithm, which is a multi-layer sensor (CAA) (teacher-learning) type, before modeling the modeling methods in the literature. The actual values produced by the indices will be compared with the outputs produced by the network. Using the neural network and the curves to be created from the resulting values, the feasibility of performance determination will be investigated.

Keywords: artifical neural networks, fire, Graham Index, levenberg-marquardt algoritm, oxygen decrease percentage index, risk assessment, Trickett Index

Procedia PDF Downloads 142
2018 Youths Economic Empowerment through Vocational Agricultural Enterprises (Entrepreneurship) for Sustainable Agriculture in Nigeria: Constraints and Initiatives for Improvement

Authors: Thomas Ogilegwu Orohu

Abstract:

This paper presents agricultural education as a vocational study, an impetus for youths, economic empowerment. The survival of Nigeria’s agriculture rests squarely on the youth who are the farmers and leaders of tomorrow. Hitherto, the teaching and learning of agriculture has proceeded in such a manner that graduates of such programs have failed to make the successful launch into the world of agricultural enterprises (entrepreneurship). Major constraints that predisposed this anomalous situation were identified to include poor policy framework, socio-economic pressures, undue parental and peer influences, improper value orientation and of course, the nature of curricula. In response to the situation, some programs and/or initiatives aimed at inculcating entrepreneurial skills were proposed by this paper with identified target beneficiaries. The initiatives bordered on curricular reorientation that integrate entrepreneurship/enterprise education, retraining of graduates, financial support system among others.

Keywords: Program initiatives. vocational agriculture, youths’ empowerment, introduction

Procedia PDF Downloads 315
2017 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre

Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar

Abstract:

With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.

Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm

Procedia PDF Downloads 231
2016 The Facilitators and Barriers to the Implementation of Educational Neuroscience: Teachers’ Perspectives

Authors: S. Kawther, C. Marshall

Abstract:

Educational neuroscience has the intention of transforming research findings of the underpinning neural processes of learning to educational practices. A main criticism of the field, hitherto, is that less focus has been put on studying the in-progress practical application of these findings. Therefore, this study aims to gain a better understanding of teachers’ perceptions of the practical application and utilization of brain knowledge. This was approached by investigating the answer to 'What are the facilitators and barriers for bringing research from neuroscience to bear on education?'. Following a qualitative design, semi-structured interviews were conducted with 12 teachers who had a proficient course in educational neuroscience. Thematic analysis was performed on the transcribed data applying Braun & Clark’s steps. Findings emerged with four main themes: time, knowledge, teacher’s involvement, and system. These themes revealed that some effective brain-based practices are being engaged in by the teachers. However, the lack of guidance and challenges regarding this implementation were also found. This study discusses findings in light of the development of educational neuroscience implementation.

Keywords: brain-based, educational neuroscience, neuroeducation, neuroscience-informed

Procedia PDF Downloads 175
2015 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 112
2014 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 289
2013 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 132
2012 Plant Leaf Recognition Using Deep Learning

Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath

Abstract:

Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.

Keywords: convolutional autoencoder, anomaly detection, web application, FLASK

Procedia PDF Downloads 167
2011 Mindmax: Building and Testing a Digital Wellbeing Application for Australian Football Players

Authors: Jo Mitchell, Daniel Johnson

Abstract:

MindMax is a digital community and learning platform built to maximise the wellbeing and resilience of AFL Players and Australian men. The MindMax application engages men, via their existing connection with sport and video games, in a range of wellbeing ideas, stories and actions, because we believe fit minds, kick goals. MindMax is an AFL Players Association led project, supported by a Movember Foundation grant, to improve the mental health of Australian males aged between 16-35 years. The key engagement and delivery strategy for the project was digital technology, sport (AFL) and video games, underpinned by evidenced based wellbeing science. The project commenced April 2015, and the expected completion date is March 2017. This paper describes the conceptual model underpinning product development, including progress, key learnings and challenges, as well as the research agenda. Evaluation of the MindMax project is a multi-pronged approach of qualitative and quantitative methods, including participatory design workshops, online reference groups, longitudinal survey methods, a naturalistic efficacy trial and evaluation of the social and economic return on investment. MindMax is focused on the wellness pathway and maximising our mind's capacity for fitness by sharing and promoting evidence-based actions that support this. A range of these ideas (from ACT, mindfulness and positive psychology) are already being implemented in AFL programs and services, mostly in face-to-face formats, with strong engagement by players. Player's experience features strongly as part of the product content. Wellbeing science is a discipline of psychology that explores what helps individuals and communities to flourish in life. Rather than ask questions about illness and poor functioning, wellbeing scientists and practitioners ask questions about wellness and optimal functioning. While illness and wellness are related, they operate as separate constructs and as such can be influenced through different pathways. The essential idea was to take the evidence-based wellbeing science around building psychological fitness to the places and spaces that men already frequent, namely sport and video games. There are 800 current senior AFL players, 5000+ past players, and 11 million boys and men that are interested in the lives of AFL Players; what they think and do to be their best both on and off field. AFL Players are also keen video gamers – using games as one way to de-stress, connect and build wellbeing. There are 9.5 million active gamers in Australia with 93% of households having a device for playing games. Video games in MindMax will be used as an engagement and learning tool. Gamers (including AFL players) can also share their personal experience of how games help build their mental fitness. Currently available games (i.e., we are not in the game creation business) will also be used to motivate and connect MindMax participants. The MindMax model is built with replication by other sport codes (e.g., Cricket) in mind. It is intended to not only support our current crop of athletes but also the community that surrounds them, so they can maximise their capacity for health and wellbeing.

Keywords: Australian football league, digital application, positive psychology, wellbeing

Procedia PDF Downloads 242
2010 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers

Authors: Yogendra Sisodia

Abstract:

Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.

Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity

Procedia PDF Downloads 112
2009 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement

Authors: Lunliang Zhong, Bin Duan

Abstract:

The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.

Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling

Procedia PDF Downloads 26
2008 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 62
2007 Practice Based Approach to the Development of Family Medicine Residents’ Educational Environment

Authors: Lazzat M. Zhamaliyeva, Nurgul A. Abenova, Gauhar S. Dilmagambetova, Ziyash Zh. Tanbetova, Moldir B. Ahmetzhanova, Tatyana P. Ostretcova, Aliya A. Yegemberdiyeva

Abstract:

Introduction: There are many reasons for the weak training of family doctors in Kazakhstan: the unified national educational program is not focused on competencies, the role of a general practitioner (GP) is not clear, poor funding for the health care and education system, outdated teaching and assessment methods, inefficient management. We highlight two issues in particular. Firstly, academic teachers of family medicine (FM) in Kazakhstan do not practice as family doctors; most of them are narrow specialists (pediatricians, therapists, surgeons, etc.); they usually hold one-time consultations; clinical mentors from practical healthcare (non-academic teachers) do not have the teaching competences, and the vast majority of them are also narrow specialists. Secondly, clinical sites (polyclinics) are unprepared for general practice and do not follow the principles of family medicine; residents do not like to be in primary health care (PHC) settings due to the chaos that is happening there, as well as due to the lack of the necessary equipment for mastering and consolidating practical skills. Aim: We present the concept of the family physicians’ training office (FPTO), which is being created as a friendly learning environment for young general practitioners and for the involvement of academic teachers of family medicine in the practical work and innovative development of PHC. Methodology: In developing the conceptual framework and identifying practical activities, we drew on literature and expert input, and interviews. Results: The goal of the FPTO is to create a favorable educational and clinical environment for the development of the FM residents’ competencies, in which the residents with academic teachers and clinical mentors could understand and accept the principles of family medicine, improve clinical knowledge and skills, and gain experience in improving the quality of their practice in scientific basis. Three main areas of office activity are providing primary care to the patients, improving educational services for FM residents and other medical workers, and promoting research in PHC and innovations. The office arranges for residents to see outpatients at least 50% of the time, and teachers of FM departments at least 1/4 of their working time conduct general medical appointments next to residents. Taking into account the educational and scientific workload, the number of attached population for one GP does not exceed 500 persons. The equipment of the office allows FPTO workers to perform invasive and other manipulations without being sent to other clinics. In the office, training for residents is focused on their needs and aimed at achieving the required level of competence. International methodologies and assessment tools are adapted to local conditions and evaluated for their effectiveness and acceptability. Residents and their faculty actively conduct research in the field of family medicine. Conclusions: We propose to change the learning environment in order to create teams of like-minded people, to unite residents and teachers even more for the development of family medicine. The offices will also invest resources in developing and maintaining young doctors' interest in family medicine.

Keywords: educational environment, family medicine residents, family physicians’ training office, primary care research

Procedia PDF Downloads 137
2006 Urban Refugees and Education in Developing Countries

Authors: Sheraz Akhtar

Abstract:

In recent years, a massive influx of refugees into developing countries has placed significant constraints on the host government’s capacities to provide social services, including education, to all. As a result, the refugee communities often find themselves deprived of their rights to education in these host countries, particularly for those who to live outside camps in urban locations. While previous research has examined the educational experiences of refugees who have resettled in developed nations, there remains a dearth of research on the educational experiences of urban refugees in developing nations. This study examines this issue through a case study of Pakistani Christian refugees living in urban settings in Thailand. Using a combination of observations within community learning centres set up by international non-government organisations (INGOs) working with these communities, and interviews with young Pakistani Christian refugees and their families, the research aims to give greater voice to the Pakistani Christian refugee community living in Thailand, and better understand their educational aspirations.

Keywords: Education, Developing Countries , INGOs, Urban Refugees

Procedia PDF Downloads 132
2005 Knowledge and Attitude: Challenges for Continuing Education in Health

Authors: André M. Senna, Mary L. G. S. Senna, Rosa M. Machado-de-Sena

Abstract:

One of the great challenges presented in educational practice is how to ensure the students not only acquire knowledge of training courses throughout their academic life, but also how to apply it in their current professional activities. Consequently, aiming to incite changes in the education system of healthcare professionals noticed the inadequacy of the training providers to solve the social problems related to health, the education related to these procedures should initiate in the earliest years of process. Following that idea, there is another question that needs an answer: If the change in the education should start sooner, in the period of basic training of healthcare professionals, what guidelines should a permanent education program incorporate to promote changes in an already established system? For this reason, the objective of this paper is to present different views of the teaching-learning process, with the purpose of better understanding the behavior adopted by healthcare professionals, through bibliographic study. The conclusion was that more than imparting knowledge to the individual, a larger approach is necessary on permanent education programs concerning the performance of professional health services in order to foment significant changes in education.

Keywords: Health Education, continuing education, training, behavior

Procedia PDF Downloads 266
2004 Teaching Computer Programming to Diverse Students: A Comparative, Mixed-Methods, Classroom Research Study

Authors: Almudena Konrad, Tomás Galguera

Abstract:

Lack of motivation and interest is a serious obstacle to students’ learning computing skills. A need exists for a knowledge base on effective pedagogy and curricula to teach computer programming. This paper presents results from research evaluating a six-year project designed to teach complex concepts in computer programming collaboratively, while supporting students to continue developing their computer thinking and related coding skills individually. Utilizing a quasi-experimental, mixed methods design, the pedagogical approaches and methods were assessed in two contrasting groups of students with different socioeconomic status, gender, and age composition. Analyses of quantitative data from Likert-scale surveys and an evaluation rubric, combined with qualitative data from reflective writing exercises and semi-structured interviews yielded convincing evidence of the project’s success at both teaching and inspiring students.

Keywords: computational thinking, computing education, computer programming curriculum, logic, teaching methods

Procedia PDF Downloads 317
2003 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 88
2002 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 121
2001 Pupils' and Teachers' Perceptions and Experiences of Welsh Language Instruction

Authors: Mirain Rhys, Kevin Smith

Abstract:

In 2017, the Welsh Government introduced an ambitious, new strategy to increase the number of Welsh speakers in Wales to 1 million by 2050. The Welsh education system is a vitally important feature of this strategy. All children attending state schools in Wales learn Welsh as a second language until the age of 16 and are assessed at General Certificate of Secondary Education (GCSE) level. In 2013, a review of Welsh second language instruction in Key Stages 3 and 4 was completed. The report identified considerable gaps in teachers’ preparation and training for teaching Welsh; poor Welsh language ethos at many schools; and a general lack of resources to support the instruction of Welsh. Recommendations were made across a number of dimensions including curriculum content, pedagogical practice, and teacher assessment, training, and resources. With a new national curriculum currently in development, this study builds on this review and provides unprecedented detail into pupils’ and teachers’ perceptions of Welsh language instruction. The current research built on data taken from an existing capacity building research project on Welsh education, the Wales multi-cohort study (WMS). Quantitative data taken from WMS surveys with over 1200 pupils in schools in Wales indicated that Welsh language lessons were the least enjoyable subject among pupils. The current research aimed to unpick pupil experiences in order to add to the policy development context. To achieve this, forty-four pupils and four teachers in three schools from the larger WMS sample participated in focus groups. Participants from years 9, 11 and 13 who had indicated positive, negative and neutral attitudes towards the Welsh language in a previous WMS survey were selected. Questions were based on previous research exploring issues including, but not limited to pedagogy, policy, assessment, engagement and (teacher) training. A thematic analysis of the focus group recordings revealed that the majority of participants held positive views around keeping the language alive but did not want to take on responsibility for its maintenance. These views were almost entirely based on their experiences of learning Welsh at school, especially in relation to their perceived lack of choice and opinions around particular lesson strategies and assessment. Analysis of teacher interviews highlighted a distinct lack of resources (materials and staff alike) compared to modern foreign languages, which had a negative impact on student motivation and attitudes. Both staff and students indicated a need for more practical, oral language instruction which could lead to Welsh being used outside the classroom. The data corroborate many of the review’s previous findings, but what makes this research distinctive is the way in which pupils poignantly address generally misguided aims for Welsh language instruction, poor pedagogical practice and a general disconnect between Welsh instruction and its daily use in their lives. These findings emphasize the complexity of incorporating the educational sector in strategies for Welsh language maintenance and the complications arising from pedagogical training, support, and resources, as well as teacher and pupil perceptions of, and attitudes towards, teaching and learning Welsh.

Keywords: bilingual education, language maintenance, language revitalisation, minority languages, Wales

Procedia PDF Downloads 113
2000 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 326
1999 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 410
1998 Analyze Needs for Training on Academic Procrastination Behavior on Students in Indonesia

Authors: Iman Dwi Almunandar, Nellawaty A. Tewu, Anshari Al Ghaniyy

Abstract:

The emergence of academic procrastination behavior among students in Indonesian, especially the students of Faculty of Psychology at YARSI University becomes a habit to be underestimated, so often interfere with the effectiveness of learning process. The lecturers at the Faculty of Psychology YARSI University have very often warned students to be able to do and collect assignments accordance to predetermined deadline. However, they are still violated it. According to researchers, this problem needs to do a proper training for the solution to minimize academic procrastination behavior on students. In this study, researchers conducted analyze needs for deciding whether need the training or not. Number of sample is 30 respondents which being choose with a simple random sampling. Measurement of academic procrastination behavior is using the theory by McCloskey (2011), there are six dimensions: Psychological Belief about Abilities, Distractions, Social Factor of Procrastination, Time Management, Personal Initiative, Laziness. Methods of analyze needs are using Questioner, Interview, Observations, Focus Group Discussion (FGD), Intelligence Tests. The result of analyze needs shows that psychology students generation of 2015 at the Faculty of Psychology YARSI University need for training on Time Management.

Keywords: procrastination, psychology, analyze needs, behavior

Procedia PDF Downloads 385