Search results for: learning assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12302

Search results for: learning assessment

7142 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 132
7141 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 299
7140 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum

Authors: K. Durairaj, I. N. Umar

Abstract:

The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating that the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in a different groups aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.

Keywords: asynchronous discussion forums, content analysis, knowledge construction, social network analysis

Procedia PDF Downloads 378
7139 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 119
7138 Impact Assessment of Climate Change on Water Resources in the Kabul River Basin

Authors: Tayib Bromand, Keisuke Sato

Abstract:

This paper presents the introduction to current water balance and climate change assessment in the Kabul river basin. The historical and future impacts of climate change on different components of water resources and hydrology in the Kabul river basin. The eastern part of Afghanistan, the Kabul river basin was chosen due to rapid population growth and land degradation to quantify the potential influence of Gobal Climate Change on its hydrodynamic characteristics. Luck of observed meteorological data was the main limitation of present research, few existed precipitation stations in the plain area of Kabul basin selected to compare with TRMM precipitation records, the result has been evaluated satisfactory based on regression and normal ratio methods. So the TRMM daily precipitation and NCEP temperature data set applied in the SWAT model to evaluate water balance for 2008 to 2012. Middle of the twenty – first century (2064) selected as the target period to assess impacts of climate change on hydrology aspects in the Kabul river basin. For this purpose three emission scenarios, A2, A1B and B1 and four GCMs, such as MIROC 3.2 (Med), CGCM 3.1 (T47), GFDL-CM2.0 and CNRM-CM3 have been selected, to estimate the future initial conditions of the proposed model. The outputs of the model compared and calibrated based on (R2) satisfactory. The assessed hydrodynamic characteristics and precipitation pattern. The results show that there will be significant impacts on precipitation patter such as decreasing of snowfall in the mountainous area of the basin in the Winter season due to increasing of 2.9°C mean annual temperature and land degradation due to deforestation.

Keywords: climate change, emission scenarios, hydrological components, Kabul river basin, SWAT model

Procedia PDF Downloads 469
7137 Exploring the Use of Adverbs in Two Young Learners Written Corpora

Authors: Chrysanthi S. Tiliakou, Katerina T. Frantzi

Abstract:

Writing has always been considered a most demanding skill for English as a Foreign Language learners as well as for native speakers. Novice foreign language writers are asked to handle a limited range of vocabulary to produce writing tasks at lower levels. Adverbs are the parts of speech that are not used extensively in the early stages of English as a Foreign Language writing. An additional problem with learning new adverbs is that, next to learning their meanings, learners are expected to acquire the proper placement of adverbs in a sentence. The use of adverbs is important as they enhance “expressive richness to one’s message”. By exploring the patterns of use of adverbs, researchers and educators can identify types of adverbs, which appear more taxing for young learners or that puzzle novice English as a Foreign Language writers with their placement, and focus on their teaching. To this end, the study examines the use of adverbs on two written Corpora of young learners of English of A1 – A2 levels and determines the types of adverbs used, their frequencies, problems in their use, and whether there is any differentiation between levels. The Antconc concordancing tool was used for the Greek Learner Corpus, and the Corpuscle concordancing tool for the Norwegian Corpus. The research found a similarity in the normalized frequencies of the adverbs used in the A1-A2 level Greek Learner Corpus with the frequencies of the same adverbs in the Norwegian Learner Corpus.

Keywords: learner corpora, young learners, writing, use of adverbs

Procedia PDF Downloads 95
7136 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification

Authors: Bing Li, Zhi Li, Yilong Yang

Abstract:

Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.

Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery

Procedia PDF Downloads 139
7135 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach

Authors: Alev Atak

Abstract:

In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.

Keywords: financial sentiment, machine learning, information disclosure, risk

Procedia PDF Downloads 96
7134 Simplifying Writing Composition to Assist Students in Rural Areas: An Experimental Study for the Comparison of Guided and Unguided Instruction

Authors: Neha Toppo

Abstract:

Method and strategies of teaching instruction highly influence learning of students. In second language teaching, number of ways and methods has been suggested by different scholars and researchers through times. The present article deals with the role of teaching instruction in developing compositional ability of students in writing. It focuses on the secondary level students of rural areas, whose exposure to English language is limited and they face challenges even in simple compositions. The students till high school suffer with their disability in writing formal letter, application, essay, paragraph etc. They face problem in note making, writing answers in examination using their own words and depend fully on rote learning. It becomes difficult for them to give language to their own ideas. Teaching writing composition deserves special attention as writing is an integral part of language learning and students at this level are expected to have sound compositional ability for it is useful in numerous domains. Effective method of instruction could help students to learn expression of self, correct selection of vocabulary and grammar, contextual writing, composition of formal and informal writing. It is not limited to school but continues to be important in various other fields outside the school such as in newspaper and magazine, official work, legislative work, material writing, academic writing, personal writing, etc. The study is based on the experimental method, which hypothesize that guided instruction will be more effective in teaching writing compositions than usual instruction in which students are left to compose by their own without any help. In the test, students of one section are asked to write an essay on the given topic without guidance and another section are asked to write the same but with the assistance of guided instruction in which students have been provided with a few vocabulary and sentence structure. This process is repeated in few more schools to get generalize data. The study shows the difference on students’ performance using both the instructions; guided and unguided. The conclusion of the study is followed by the finding that writing skill of the students is quite poor but with the help of guided instruction they perform better. The students are in need of better teaching instruction to develop their writing skills.

Keywords: composition, essay, guided instruction, writing skill

Procedia PDF Downloads 284
7133 Alternative General Formula to Estimate and Test Influences of Early Diagnosis on Cancer Survival

Authors: Li Yin, Xiaoqin Wang

Abstract:

Background and purpose: Cancer diagnosis is part of a complex stochastic process, in which patients' personal and social characteristics influence the choice of diagnosing methods, diagnosing methods, in turn, influence the initial assessment of cancer stage, the initial assessment, in turn, influences the choice of treating methods, and treating methods in turn influence cancer outcomes such as cancer survival. To evaluate diagnosing methods, one needs to estimate and test the causal effect of a regime of cancer diagnosis and treatments. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to estimate and test these causal effects via point effects. The purpose of the work is to estimate and test causal effects under various regimes of cancer diagnosis and treatments via point effects. Challenges and solutions: The cancer stage has influences from earlier diagnosis as well as on subsequent treatments. As a consequence, it is highly difficult to estimate and test the causal effects via standard parameters, that is, the conditional survival given all stationary covariates, diagnosing methods, cancer stage and prognosis factors, treating methods. Instead of standard parameters, we use the point effects of cancer diagnosis and treatments to estimate and test causal effects under various regimes of cancer diagnosis and treatments. We are able to use familiar methods in the framework of single-point causal inference to accomplish the task. Achievements: we have applied this method to stomach cancer survival from a clinical study in Sweden. We have studied causal effects under various regimes, including the optimal regime of diagnosis and treatments and the effect moderation of the causal effect by age and gender.

Keywords: cancer diagnosis, causal effect, point effect, G-formula, sequential causal effect

Procedia PDF Downloads 200
7132 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs

Authors: Amir Ahmad Dehghani, Morteza Nabizadeh

Abstract:

This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.

Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam

Procedia PDF Downloads 483
7131 Pedagogical Inclusiveness in Literacy Education: Teaching Reading and Writing to Non-Chinese Speaking Students in Hong Kong

Authors: Mark Shiu-kee Shum, Dan Shi

Abstract:

The paper aims to introduce the ‘Reading to Learn, Learning to Write’ (R2L) pedagogy and its application in teaching reading and writing to non-Chinese speaking (NCS) students in Hong Kong. Guided by the teaching and learning cycles accentuated in R2L pedagogy, sufficient scaffolding was provided for students with an explicit teaching method in literacy education. To understand the influence of using R2L pedagogy on students’ reading and writing abilities across different genres, quantitative data were collected by pre- and post-test of reading and writing tasks in the two different genres of narration and explanation. The pre-test and post-test were used to assess students’ writing performance based on the three textual components of context, discourse, and graphic features, while the reading abilities were assessed at the literal, inferred and interpretive levels of reading comprehension to measure the effectiveness of R2L pedagogy on their literacy improvement. The findings show the use of R2L pedagogy has been proven more effective in improving NCS students’ writing abilities than developing their reading capacity. It is hoped that the R2L-based pedagogic practices can serve as teaching references and pedagogic rationale for L1 language teachers and raise their metalinguistic awareness in teaching Chinese to non-Chinese speaking students in Hong Kong and beyond.

Keywords: pedagogical inclusiveness, literacy education, ethnic minority, reading and writing

Procedia PDF Downloads 52
7130 Positive Psychology Intervention for Dyslexia: A Qualitative Study

Authors: Chathurika Sewwandi Kannangara, Jerome Carson

Abstract:

The objective of this research is to identify strengths among the individuals with dyslexia and design a positive psychology intervention to support such individuals. Dyslexia is a combination of abilities and difficulties that affect the learning process in areas as such reading, spelling and writing. It is a persistent condition. The research aims to adapt positive psychology techniques to support individuals with dyslexia. Population of the research will be undergraduate and college level students with dyslexia. First phase of the study will be conducted on a sample of undergraduate and college level students with dyslexia in Bolton, UK. The concept of treatment in positive psychology is not only to fix the component just what is wrong, instead it is also to develop and construct on what is right in the individual. The first phase of the research aims to identify the signature strengths among the individuals with dyslexia using Interviews, Descriptions on personal experiences on ‘My life with Dyslexia’, and Values in Action (VIA) strength survey. In order to conduct the survey for individuals with dyslexia, the VIA survey has been hosted in a website which is solely developed in the form of dyslexia friendly context. Dyslexia friendly website for surveys had designed and developed following the British Dyslexia Association guidelines. The findings of the first phase would be utilized for the second phase of the research to develop the positive psychology intervention.

Keywords: dyslexia, signature strengths, positive psychology, qualitative study, learning difficulties

Procedia PDF Downloads 448
7129 A Multi-Model Approach to Assess Atlantic Bonito (Sarda Sarda, Bloch 1793) in the Eastern Atlantic Ocean: A Case Study of the Senegalese Exclusive Economic Zone

Authors: Ousmane Sarr

Abstract:

The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.

Keywords: multi-model approach, stock assessment, atlantic bonito, healthy stock, sustainable, SEEZ, temporary management measures

Procedia PDF Downloads 64
7128 Exploring Ways Early Childhood Teachers Integrate Information and Communication Technologies into Children's Play: Two Case Studies from the Australian Context

Authors: Caroline Labib

Abstract:

This paper reports on a qualitative study exploring the approaches teachers used to integrate computers or smart tablets into their program planning. Their aim was to integrate ICT into children’s play, thereby supporting children’s learning and development. Data was collected in preschool settings in Melbourne in 2016. Interviews with teachers, observations of teacher interactions with children and copies of teachers’ planning and observation documents informed the study. The paper looks closely at findings from two early childhood settings and focuses on exploring the differing approaches two EC teachers have adopted when integrating iPad or computers into their settings. Data analysis revealed three key approaches which have been labelled: free digital play, guided digital play and teacher-led digital use. Importantly, teacher decisions were influenced by the interplay between the opportunities that the ICT tools offered, the teachers’ prior knowledge and experience about ICT and children’s learning needs and contexts. This paper is a snapshot of two early childhood settings, and further research will encompass data from six more early childhood settings in Victoria with the aim of exploring a wide range of motivating factors for early childhood teachers trying to integrate ICT into their programs.

Keywords: early childhood education (ECE), digital play, information and communication technologies (ICT), play, and teachers' interaction approaches

Procedia PDF Downloads 215
7127 Diagnostics and Explanation of the Current Status of the 40- Year Railway Viaduct

Authors: Jakub Zembrzuski, Bartosz Sobczyk, Mikołaj MIśkiewicz

Abstract:

Besides designing new constructions, engineers all over the world must face another problem – maintenance, repairs, and assessment of the technical condition of existing bridges. To solve more complex issues, it is necessary to be familiar with the theory of finite element method and to have access to the software that provides sufficient tools which to enable create of sometimes significantly advanced numerical models. The paper includes a brief assessment of the technical condition, a description of the in situ non-destructive testing carried out and the FEM models created for global and local analysis. In situ testing was performed using strain gauges and displacement sensors. Numerical models were created using various software and numerical modeling techniques. Particularly noteworthy is the method of modeling riveted joints of the crossbeam of the viaduct. It is a simplified method that consists of the use of only basic numerical tools such as beam and shell finite elements, constraints, and simplified boundary conditions (fixed support and symmetry). The results of the numerical analyses were presented and discussed. It is clearly explained why the structure did not fail, despite the fact that the weld of the deck plate completely failed. A further research problem that was solved was to determine the cause of the rapid increase in values on the stress diagram in the cross-section of the transverse section. The problems were solved using the solely mentioned, simplified method of modeling riveted joints, which demonstrates that it is possible to solve such problems without access to sophisticated software that enables to performance of the advanced nonlinear analysis. Moreover, the obtained results are of great importance in the field of assessing the operation of bridge structures with an orthotropic plate.

Keywords: bridge, diagnostics, FEM simulations, failure, NDT, in situ testing

Procedia PDF Downloads 78
7126 Assessment of Maternal Satisfaction Regarding Quality of Care during Labor

Authors: Farida Habib, Haya Alfozan, Eman Miligi, Najla Alotaibi

Abstract:

Background: Women’s satisfaction with maternity services, especially care during labor and birth, has become highly significant to healthcare providers, administrators, and policymakers. Purpose: The aims of this study were to assess maternal satisfaction regarding the quality of care during labor and to compare the level of maternal satisfaction between women who delivered by physicians and those delivered by midwives. Methodology: A descriptive, cross-sectional, correlational design was used. A convenient sample of 180 low-risk cases of immediate postpartum women who delivered at King Abdul-Aziz medical city was recruited. Women whose babies were diagnosed with serious health problems were excluded from the study. Data were collected using a self-administered questionnaire. The validity and reliability of the questionnaire were ensured. The questionnaire included three parts, namely: demographics data, medical history, and obstetrical history, and the last part is the satisfaction assessment tool. Ethical confederations were ensured. Maternal satisfaction during labor was classified in terms of health care, health workers' communication, and the environment. Results: Regarding health care, women were highly satisfied with care received from nurse (M = 4.21 + 0.88), medical care received (M = 4.17 + 0.79), and comfort techniques (M = 4.04 + 0.91). Regarding health workers' communication, women were highly satisfied with the provider to treat with dignity and respect (M = 4.03 + 0.91) and orientation to the toilet, bathroom, washing area (M = 4.00 + 0.93). Regarding the environment, women were highly satisfied with the experience of their baby's birth (M = 4.18 + 0.98) and supplies with drugs and supplies (M = 4.09 + 0.97). There was no statistically significant difference in maternal satisfaction between women who delivered by physicians and those delivered by midwives. Conclusion: Women were generally satisfied with their labor and delivery experience. There was no difference in maternal satisfaction on the labor process between women who delivered by physicians and those delivered by midwives.

Keywords: maternity, satisfaction, labor, delivery

Procedia PDF Downloads 198
7125 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 93
7124 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 303
7123 Assessment Client Satisfaction with Family Physician in Health Care Centers of Jiroft County and Its Relationship with Physician’ Demographic Variables

Authors: Babak Nemat Shahrbabaki, Arezo Fallahi, Masoomeh Hashemian

Abstract:

Introduction: Health and safety are basic components of civil right. Health care systems in different countries were influenced by political, economic and cultural circumstances. In order to health services to people, these systems are organized with different forms, methods such as: prevention, treatment and rehabilitation and in this among, public satisfaction with the services provided is important. This study aimed to determine client satisfaction with family physician and relationship with physician’ demographic variables in health care centers of Jiroft county, Iran. Methods: This is a descriptive-analytical study. The collective data tool was a self-made questionnaire with two parts. The first part comprised demographic characteristics, and the second part contained 11 items for the assessment of satisfaction with family physician from different aspects. In addition, questionnaire, reliability and validity were confirmed. Random simple sampling method was used to determine samples. 234 people referred to the health centers filled questionnaire. The data were analyzed using SPSS software, and inferential statistical analysis was performed. Findings: The majority of the study population were women, married, and aged between 18 and 62 years (mean= 30.09±10.71). Total average satisfaction score was 42.63±3.68. Overall satisfaction averages were 9.47% very high, 30.04% high, 33.09% moderate, 15.12% low, and 12.28% very low. Except lodge on of family physician none of physician’ demographic variables did not effect on satisfaction index. Discussion & Conclusion: The Results showed that mean of satisfaction indexes of family physicians was high and lodge on of family physician effected on this index. Informing people about the main goals of family-doctor program will help to promote the quality of program and increase people satisfaction.

Keywords: family physician program, satisfaction, health-care centers, client

Procedia PDF Downloads 448
7122 Spironolactone in Psoriatic Arthritis: Safety, Efficacy and Effect on Disease Activity

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Therapeutic approaches used previously relied on disease-modifying antirheumatic drugs (DMARDs) that had only partial clinical benefit and were associated with significant toxicity. Spironolactone, an oral aldosterone antagonist, suppresses inflammatory mediators. Clinical efficacy of spironolactone compared with placebo in patients with active psoriatic arthritis despite treatment with prior traditional DMARDs. In the 24-week, placebo-controlled study patients (n=31) were randomized to placebo and spironolactone (2 m/kg/day). Patients on background concurrent DMARDs continued stable doses (methotrexate, leflunomide, and/or sulfasalazine). Primary outcome measures were the assessment of disease activity measures i.e. 28-joint disease activity score (DAS28) and diseases activity in psoriatic arthritis (DAPSA) at week 24. The key secondary endpoint was change from baseline in Health Assessment Questionnaire–Disability Index (HAQ-DI) at week 24. Additional efficacy outcome measures at week 24 included improvements in the markers of inflammation (ESR and CRP) and pro-inflammatory cytokines TNF-α, IL-6 and IL-1. At week 24, spironolactone significantly reduced disease activity measure DAS-28 (p<0.001) and DAPSA (p=0.001) compared with placebo. Significant improvements in key secondary measures HAQ-DI (disability index) were evident with spironolactone (p=0.02) versus placebo. After week 24, there was significant reduction in pro-inflammatory cytokines level TNF-α, IL-6 (p<0.01) as compared with placebo group. However, there was no significant improvement in IL-1 in both treatment and placebo groups. There were minor side effects which did not mandate stopping of spironolactone. No change in any biochemical profile was noted after spironolactone treatment. Spironolactone was effective in the treatment of PsA, improving disease activity, physical function and suppressing the level of pro-inflammatory cytokines. Spironolactone demonstrated an acceptable safety profile and was well tolerated.

Keywords: spironolactone, inflammation, inflammatory cytokine, psoriatic arthritis

Procedia PDF Downloads 341
7121 Teaching Young Children Social and Emotional Learning through Shared Book Reading: Project GROW

Authors: Stephanie Al Otaiba, Kyle Roberts

Abstract:

Background and Significance Globally far too many students read below grade level; thus improving literacy outcomes is vital. Research suggests that non-cognitive factors, including Social and Emotional Learning (SEL) are linked to success in literacy outcomes. Converging evidence exists that early interventions are more effective than later remediation; therefore teachers need strategies to support early literacy while developing students’ SEL and their vocabulary, or language, for learning. This presentation describe findings from a US federally-funded project that trained teachers to provide an evidence-based read-aloud program for young children, using commercially available books with multicultural characters and themes to help their students “GROW”. The five GROW SEL themes include: “I can name my feelings”, “I can learn from my mistakes”, “I can persist”, “I can be kind to myself and others”, and “I can work toward and achieve goals”. Examples of GROW vocabulary (from over 100 words taught across the 5 units) include: emotions, improve, resilient, cooperate, accomplish, responsible, compassion, adapt, achieve, analyze. Methodology This study used a mixed methods research design, with qualitative methods to describe data from teacher feedback surveys (regarding satisfaction, feasibility), observations of fidelity of implementation, and with quantitative methods to assess the effect sizes for student vocabulary growth. GROW Intervention and Teacher Training Procedures Researchers trained classroom teachers to implement GROW. Each thematic unit included four books, vocabulary cards with images of the vocabulary words, and scripted lessons. Teacher training included online and in-person training; researchers incorporated virtual reality videos of instructors with child avatars to model lessons. Classroom teachers provided 2-3 20 min lessons per week ranging from short-term (8 weeks) to longer-term trials for up to 16 weeks. Setting and Participants The setting for the study included two large urban charter schools in the South. Data was collected across two years; during the first year, participants included 7 kindergarten teachers and 108 and the second year involved an additional set of 5 kindergarten and first grade teachers and 65 students. Initial Findings The initial qualitative findings indicate teachers reported the lessons to be feasible to implement and they reported that students enjoyed the books. Teachers found the vocabulary words to be challenging and important. They were able to implement lessons with fidelity. Quantitative analyses of growth for each taught word suggest that students’ growth on taught words ranged from large (ES = .75) to small (<.20). Researchers will contrast the effects for more and less successful books within the GROW units. Discussion and Conclusion It is feasible for teachers of young students to effectively teach SEL vocabulary and themes during shared book reading. Teachers and students enjoyed the books and students demonstrated growth on taught vocabulary. Researchers will discuss implications of the study and about the GROW program for researchers in learning sciences, will describe some limitations about research designs that are inherent in school-based research partnerships, and will provide some suggested directions for future research and practice.

Keywords: early literacy, learning science, language and vocabulary, social and emotional learning, multi-cultural

Procedia PDF Downloads 46
7120 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing

Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling

Abstract:

The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing.

Keywords: outreach, education and public engagement, careers, peer interactions

Procedia PDF Downloads 156
7119 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 192
7118 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria

Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar

Abstract:

Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.

Keywords: biocapacity, carbon footprint, ecological footprint assessment, energy consumption

Procedia PDF Downloads 151
7117 Predictors of Clinical Failure After Endoscopic Lumbar Spine Surgery During the Initial Learning Curve

Authors: Daniel Scherman, Daniel Madani, Shanu Gambhir, Marcus Ling Zhixing, Yingda Li

Abstract:

Objective: This study aims to identify clinical factors that may predict failed endoscopic lumbar spine surgery to guide surgeons with patient selection during the initial learning curve. Methods: This is an Australasian prospective analysis of the first 105 patients to undergo lumbar endoscopic spine decompression by 3 surgeons. Modified MacNab outcomes, Oswestry Disability Index (ODI) and Visual Analogue Score (VAS) scores were utilized to evaluate clinical outcomes at 6 months postoperatively. Descriptive statistics and Anova t-tests were performed to measure statistically significant (p<0.05) associations between variables using GraphPad Prism v10. Results: Patients undergoing endoscopic lumbar surgery via an interlaminar or transforaminal approach have overall good/excellent modified MacNab outcomes and a significant reduction in post-operative VAS and ODI scores. Regardless of the anatomical location of disc herniations, good/excellent modified MacNab outcomes and significant reductions in VAS and ODI were reported post-operatively; however, not in patients with calcified disc herniations. Patients with central and foraminal stenosis overall reported poor/fair modified MacNab outcomes. However, there were significant reductions in VAS and ODI scores post-operatively. Patients with subarticular stenosis or an associated spondylolisthesis reported good/excellent modified MacNab outcomes and significant reductions in VAS and ODI scores post-operatively. Patients with disc herniation and concurrent degenerative stenosis had generally poor/fair modified MacNab outcomes. Conclusion: The outcomes of endoscopic spine surgery are encouraging, with a low complication and reoperation rate. However, patients with calcified disc herniations, central canal stenosis or a disc herniation with concurrent degenerative stenosis present challenges during the initial learning curve and may benefit from traditional open or other minimally invasive techniques.

Keywords: complications, lumbar disc herniation, lumbar endoscopic spine surgery, predictors of failed endoscopic spine surgery

Procedia PDF Downloads 158
7116 Towards Sustainable Consumption: A Framework for Assessing Supplier's Commitment

Authors: O. O. Oguntoye

Abstract:

Product consumption constitutes an important consideration for sustainable development. Seeing how product consumption could be highly unsustainable, coupled with how existing policies on corporate responsibility do not particularly address the consumption aspect of product lifecycle, conducting this research became necessary. The research makes an attempt to provide a framework by which to gauge corporate responsibility of product suppliers in terms of their commitment towards the sustainable consumption of their products. Through an exploration of relevant literature, independently established ideas with which to assess a given product supplier were galvanised into a four-criterion framework. The criteria are: (1) Embeddedness of consumption as a factor in corporate sustainability policy, (2) Level of understanding of consumption behaviour, (3) Breadth of behaviour-influencing strategies adopted, and (4) Inclusiveness for all main dimensions of sustainability. This resulting framework was then applied in a case study involving a UK-based furniture supplier where interviews and content analysis of corporate documents were used as the mode for primary data collection. From the case study, it was found that the supplier had performed to different levels across the four themes of the assessment. Two major areas for improvement were however identified – one is for the furniture supplier to focus more proactively on understanding consumption behaviour and, two is for it to widen the scope of its current strategies for enhancing sustainable consumption of supplied furniture. As a generalisation, the framework presented here makes it possible for companies to reflect with a sense of guidance, how they have demonstrated commitment towards sustainable consumption through their values, culture, and operations. It also provides a foundation for developing standardized assessment which the current widely used frameworks such as the GRI, the Global Compact, and others do not cover. While these popularly used frameworks mainly focus on sustainability of companies within the production and supply chain management contexts (i.e. mostly ‘upstream’), the framework here provides an extension by bringing the ‘downstream’ or consumer bit into light.

Keywords: corporate sustainability, design for sustainable consumption, extended producer responsibility, sustainable consumer behaviour

Procedia PDF Downloads 424
7115 Listening Children Through Storytelling

Authors: Catarina Cruz, Ana Breda

Abstract:

In the early years, until the children’s entrance at the elementary school, they are stimulated by their educators, through rich and attractive contexts, to explore and develop skills in different domains, from the socio-emotional to the cognitive. Many of these contexts trigger real or imaginary situations, familiar or not, through resources or pedagogical practices that incite children's curiosity, questioning, expression of ideas or emotions, social interaction, among others. Later, when children enter at the elementary school, their activity at school becomes more focused on developing skills in the cognitive domain, namely acquiring learning from different subject areas, such as Mathematics, Natural Sciences, History, among others. That is, to ensure that children develop the standardized learning recommended in the guiding curriculum documents, they spend part of their time applying formulas, memorizing information, following instructions, and so on, and in this way not much time is left to listen children, to learn about their interests and likes, as well as their perspective and questions about the surround world. In Elementary School, especially in the 1st Cycle, children are naturally curious, however, sometimes this skill is subtly conditioned by adults. Curious children learn more, since they have an intrinsic desire to know more, especially about what is unknown. When children think on subjects or themes that they are interested in or curious about, they attribute more meaning to this learning and retain it for longer. Therefore, it is important to approach subjects in the classroom that seduce or captivate children's attention, trigger them curiosity, and allow to hear their ideas. There are several resources, strategies and pedagogical practices to awaken children's curiosity, to explore their knowledge, to understand their perspectives and their way of thinking, to know a little more about their personality and to provide space for dialogue. The storytelling, its narrative’s exploration and interpretation is one of those pedagogical practices. Children’s literature, about real or imaginary subjects, stimulate children’s insights supported into their experiences, emotions, learnings and personality, and promote opportunities for children express freely their feelings and thoughts. This work focuses on a session developed with children in the 3rd year of schooling, from a Portuguese 1st Cycle Basic School, in which the story "From the Outside In and From the Inside Out" was presented. The story’s presentation was mainly centred on children’s activity, who read excerpts and interpreted/explored them through a dialogue led by one of the authors. The study presented here intends to show an example of how an exploration of a children's story can trigger ideas, thoughts, emotions or attitudes in children in the 3rd year of elementary school. To answer the research question, this work aimed to: identify ideas, thoughts, emotions or attitudes that emerged from the exploration of story; analyse aspects of the story and the orchestration/conduction of dialogue with/between children that facilitated or inhibited the emergence of ideas, thoughts, emotions or attitudes by children,

Keywords: storytelling, children’s perspectives, soft skills, non-formal learning contexts, orchestration

Procedia PDF Downloads 29
7114 A Damage Level Assessment Model for Extra High Voltage Transmission Towers

Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang

Abstract:

Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.

Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower

Procedia PDF Downloads 302
7113 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 156