Search results for: shape function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7010

Search results for: shape function

6530 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs

Procedia PDF Downloads 162
6529 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 340
6528 Evaluation and Association of Thyroid Function Tests with Liver Function Parameters LDL and LDH Level Before and after I131 Therapy

Authors: Sabika Rafiq, Rubaida Mehmood, Sajid Hussain, Atia Iqbal

Abstract:

Background and objectives: The pathogenesis of liver function abnormalities and cardiac dysfunction in hyperthyroid patients after I131 treatment is still unclear. This study aimed to determine the effects of radioiodine I131 on liver function parameters, lactate dehydrogenase (LDH) and low-density lipoproteins (LDL) before and after I131 therapy hyperthyroidism patients. Material & Methods: A total of 52 patients of hyperthyroidism recommended for I131were involved in this study with ages ranging from 12–65 years (mean age=38.6±14.8 & BMI=11.5±3.7). The significance of the differences between the results of 1st, 2nd and 3rd-time serum analysis was assessed by unpaired student’s t-test. Associations between the parameters were assessed by Spearman correlation analysis. Results: Significant variations were observed for thyroid profile free FT3 (p=0.04), FT4 (p=0.01), TSH (p=0.005) during the follow-up treatment. Before taking I131 (serum analyzed at 1st time), negative correlation of FT3 with AST (r=-0.458, p=0.032) and LDL (r=-0.454, p=0.039) were observed. During 2nd time (after stopping carbimazole), no correlation was assessed. Two months after the administration of I131 drops, a significant negative association of FT3 (r=-0.62, p=0.04) and FT4(r=-0.61, p=0.02) with ALB were observed. FT3(r=-0.82, p=0.00) & FT4 (r=-0.71, p=0.00) also showed negative correlation with LDL after I131 therapy. Whereas TSH showed significant positive association with ALB (r=0.61, p=0.01) and LDL (r=0.70, p=0.00) respectively. Conclusion: Current findings suggested that the association of TFTs with biochemical parameters in patients with goiter recommended for iodine therapy is an important diagnostic and therapeutic tool. The significant changes increased in transaminases and low-density lipoprotein levels after taking I131drops are alarming signs for heart and liver function abnormalities and warrant physicians' attention on an urgent basis.

Keywords: hyperthyroidism, carbimazole, radioiodine I131, liver functions, low-density lipoprotein

Procedia PDF Downloads 155
6527 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 199
6526 Static and Dynamic Analysis of Microcantilever Beam

Authors: S. B. Kerur, B. S. Murgayya

Abstract:

The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.

Keywords: micro, FEM, dynamic, cantilever beam

Procedia PDF Downloads 384
6525 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance

Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec

Abstract:

The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV

Procedia PDF Downloads 139
6524 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications

Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani

Abstract:

This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification

Procedia PDF Downloads 298
6523 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 605
6522 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 276
6521 Alternative Dispute Resolution Procedures for International Conflicts about Industrial Design

Authors: Moreno Liso Lourdes

Abstract:

The industrial design protects the appearance of part or all of a product resulting from the features of, in particular, the lines, contours, colors, shape, texture or materials of the product itself or its ornamentation. The industrial property offers a different answer depending on the characteristics of the shape object of protection possible, including the trademark and industrial design. There are certain cases where the trademark right invalidate the exclusive right of the industrial design. This can occur in the following situations: 1st) collected as a sign design and trademarked; and 2nd) you want to trademark and protected as a form design (either registered or unregistered). You can either get a trade mark or design right in the same sign or form, provided it meets the legal definition of brand and design and meets the requirements imposed for the protection of each of them, even able to produce an overlap of protection. However, this double protection does not have many advantages. It is, therefore, necessary to choose the best form of legal protection according to the most adequate ratios. The diversity of rights that can use the creator of an industrial design to protect your job requires you to make a proper selection to prevent others, especially their competitors, taking advantage of the exclusivity that guarantees the law. It is necessary to choose between defending the interests of the parties through a judicial or extrajudicial procedure when the conflict arises. In this paper, we opted for the defense through mediation.

Keywords: industrial design, ADR, Law, EUIPO

Procedia PDF Downloads 241
6520 A Distribution Free Test for Censored Matched Pairs

Authors: Ayman Baklizi

Abstract:

This paper discusses the problem of testing hypotheses about the lifetime distributions of a matched pair based on censored data. A distribution free test based on a runs statistic is proposed. Its null distribution and power function are found in a simple convenient form. Some properties of the test statistic and its power function are studied.

Keywords: censored data, distribution free, matched pair, runs statistics

Procedia PDF Downloads 288
6519 Cellular Automata Using Fractional Integral Model

Authors: Yasser F. Hassan

Abstract:

In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.

Keywords: fractional integral, cellular automata, memory, learning

Procedia PDF Downloads 415
6518 Establishing a Computational Screening Framework to Identify Environmental Exposures Using Untargeted Gas-Chromatography High-Resolution Mass Spectrometry

Authors: Juni C. Kim, Anna R. Robuck, Douglas I. Walker

Abstract:

The human exposome, which includes chemical exposures over the lifetime and their effects, is now recognized as an important measure for understanding human health; however, the complexity of the data makes the identification of environmental chemicals challenging. The goal of our project was to establish a computational workflow for the improved identification of environmental pollutants containing chlorine or bromine. Using the “pattern. search” function available in the R package NonTarget, we wrote a multifunctional script that searches mass spectral clusters from untargeted gas-chromatography high-resolution mass spectrometry (GC-HRMS) for the presence of spectra consistent with chlorine and bromine-containing organic compounds. The “pattern. search” function was incorporated into a different function that allows the evaluation of clusters containing multiple analyte fragments, has multi-core support, and provides a simplified output identifying listing compounds containing chlorine and/or bromine. The new function was able to process 46,000 spectral clusters in under 8 seconds and identified over 150 potential halogenated spectra. We next applied our function to a deidentified dataset from patients diagnosed with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and healthy controls. Twenty-two spectra corresponded to potential halogenated compounds in the PSC and PBC dataset, including six significantly different in PBC patients, while four differed in PSC patients. We have developed an improved algorithm for detecting halogenated compounds in GC-HRMS data, providing a strategy for prioritizing exposures in the study of human disease.

Keywords: exposome, metabolome, computational metabolomics, high-resolution mass spectrometry, exposure, pollutants

Procedia PDF Downloads 138
6517 Periodic Change in the Earth’s Rotation Velocity

Authors: Sung Duk Kim, Kwan U. Kim, Jin Sim, Ryong Jin Jang

Abstract:

The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity.

Keywords: Earth rotation, moment function, periodic change, seasonal variation, relativistic change

Procedia PDF Downloads 76
6516 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: buoyancy force, friction force, finite volume method, transient natural convection

Procedia PDF Downloads 197
6515 Influence and Depiction of Power in an Urban Space

Authors: Kalpeshkumar Patel, Nikita Manvi

Abstract:

The paper is an attempt to understand the influence and depiction of power in an urban space by throwing light across a few examples across the architectural timeline. Power has been the medium through which ideologies function, as witnessed across the timeline. The center to understand this ideology is to apprehend how power is formed, captured, owned, traded, and distorted. Every urban space has power embedded in it, either for the people who are imposing it or for the public who are receiving it. The most fundamental question in the issue of power is who – who will judge, whose tastes will matter and whose interests are being served. Power is expressed and reinforced by regular means, a boundary and gates, a parade route, a dominant landmark, play of shape or scale in elevation, ceremonial axis, boulevards and avenues, the vista, bilateral symmetry, or regular order. Even if people accept the psychological efficacy of these forms, the way they perceive them may vary depending on the subject. They are cold devices of power used to make some people submit to others. Yet it is also true that these symbolic forms are attractive because they speak to the deep emotions of people. They do indeed give us a sense of security, stability and continuity, awe and pride. The Urban Space for mass assembly is an idea that continues to seduce dictators and democracies. It is a tradition as old as an agora and as manipulative as Baroque Rome.

Keywords: urban space, aggrandization, city planning, landscape, supremacy, democratic

Procedia PDF Downloads 129
6514 An Algorithm to Find Fractional Edge Domination Number and Upper Fractional Edge Domination Number of an Intuitionistic Fuzzy Graph

Authors: Karunambigai Mevani Govindasamy, Sathishkumar Ayyappan

Abstract:

In this paper, we formulate the algorithm to find out the dominating function parameters of Intuitionistic Fuzzy Graphs(IFG). The methodology we adopted here is converting any physical problem into an IFG, and that has been transformed into Intuitionistic Fuzzy Matrix. Using Linear Program Solver software (LiPS), we found the defined parameters for the given IFG. We obtained these parameters for a path and cycle IFG. This study can be extended to other varieties of IFG. In particular, we obtain the definition of edge dominating function, minimal edge dominating function, fractional edge domination number (γ_if^') and upper fractional edge domination number (Γ_if^') of an intuitionistic fuzzy graph. Also, we formulated an algorithm which is appropriate to work on LiPS to find fractional edge domination number and upper fractional edge domination number of an IFG.

Keywords: fractional edge domination number, intuitionistic fuzzy cycle, intuitionistic fuzzy graph, intuitionistic fuzzy path

Procedia PDF Downloads 177
6513 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System

Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar

Abstract:

The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.

Keywords: genetic algorithm, energy, exergy, PVT module, optimization

Procedia PDF Downloads 606
6512 Effect of Co-doping on Polycrystalline Ni-Mn-Ga

Authors: Mahsa Namvari, Kari Ullakko

Abstract:

It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.

Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth

Procedia PDF Downloads 95
6511 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots

Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang

Abstract:

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.

Keywords: graphene, quantum dot, size, photoluminescence

Procedia PDF Downloads 295
6510 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran

Authors: Azar Khodabakhshi, Elham Bolandnazar

Abstract:

Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.

Keywords: crop yield, energy, neuro-fuzzy method, strawberry

Procedia PDF Downloads 383
6509 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: missing values, incomplete data, distance, incomplete diabetes data

Procedia PDF Downloads 225
6508 A Study on the Small Biped Soft Robot with Two Insect-Like Nails

Authors: Mami Nishida

Abstract:

This paper presented a study on the development and control of a small biped soft robot using shape memory alloys (SMAs). Author proposed a flexible flat plate (FFP) actuators consisting of a thin polyethylene plate and SMAs. This actuator has a nail like an insect. This robot moves from the front to back and from left to right using two nails. The walking robot has two degrees of freedom and is controlled by switching the ON-OFF current signals to the SMA based FFPs. The resulting small biped soft robot weighs a mere 4.7 g (with a height of 67 mm). The small robot realizes biped walking by transferring the elastic potential energy (generated by deflections of the SMA based FFPs) to kinematic energy. Experimental results demonstrated the viability and utility of the small biped soft robot with the proposed SMA-based FFPs and the control strategy to achieve walking behavior.

Keywords: biped soft robot with nails, flexible flat plate (FFP) actuators, ON-OFF control strategy, shape memory alloys (SMA)

Procedia PDF Downloads 503
6507 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions

Authors: David Kriebel, Jan Edgar Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia PDF Downloads 243
6506 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.

Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter

Procedia PDF Downloads 42
6505 Developing a Structured Example Space for Finding the Collision Points of Functions and Their Inverse

Authors: M. Saeed, A. Shahidzadeh

Abstract:

Interaction between teachers and learners requires applying a set of samples (examples) which helps to create coordination between the goals and methods. The main result and achievement and application of samples (examples) are that they can bring the teacher and learner to a shared understanding of the concept. mathematical concepts, and also one of the challenging issues in the discussion of the function is to find the collision points of functions of and, regarding that the example space of teachers is different in this issue, this paper aims to present an example space including several problems of the secondary school with the help of intuition and drawing various graphs of functions of and for more familiarity of teachers.

Keywords: inverse function, educational example, Mathematic example, example space

Procedia PDF Downloads 179
6504 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method

Authors: Kadda Boumediene, Mohamed Ziani

Abstract:

Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.

Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape

Procedia PDF Downloads 353
6503 Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags

Authors: Kewei Fan, Sihong Liu, Yi Pik Cheng

Abstract:

This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface.

Keywords: geosynthetics, retaining wall, soil bag, failure mode, interface, shear strength

Procedia PDF Downloads 131
6502 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming

Procedia PDF Downloads 301
6501 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 83