Search results for: real time data processing
40087 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study
Authors: Hamidoddin Yousife
Abstract:
Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.Keywords: drlling, cost, optimization, parameters
Procedia PDF Downloads 16840086 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW
Procedia PDF Downloads 49540085 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 740084 Robust Image Design Based Steganographic System
Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi
Abstract:
This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).Keywords: encryption, thresholding, differential predictive coding, four triangles operation
Procedia PDF Downloads 49340083 An Intercontinental Comparison of Delay Discounting for Real and Hypothetical Money and Cigarettes among Cigarette Smokers
Authors: Steven R. Lawyer, Tereza Prihodova, Katerina Prihodova
Abstract:
Delay discounting (DD) is one of the most frequently used behavioral-economic measures of impulsive choice, but there are few cross-cultural comparisons of discounting, and to the best of our knowledge, none compare patterns of DD across different commodities or compare real and hypothetical rewards across cultures. The purpose of this study was to compare patterns of DD for both real and hypothetical money and cigarettes among participants in the USA and the Czech Republic. Adult smokers from the United States and the Czech Republic completed standard measures of DD for hypothetical and real money (~$10USD) and cigarettes (1 pack, or 20 cigarettes). Contrary to data from the USA sample, Czech Republic participants discounted the value of real money steeper than hypothetical money, though this could be related to the relatively poor fit of the hyperbolic decay function to DD for hypothetical money in the Czech sample. These findings suggest that there might be cultural differences in delay discounting that warrant further attention.Keywords: delay discounting, temporal discounting, cigarette smoking, real rewards, hypothetical rewards
Procedia PDF Downloads 18840082 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen
Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev
Abstract:
The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms
Procedia PDF Downloads 9040081 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 14640080 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems
Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran
Abstract:
Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model
Procedia PDF Downloads 51640079 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 22640078 Risk Spillover Between Stock Indices and Real Estate Mixed Copula Modeling
Authors: Hina Munir Abbasi
Abstract:
The current paper examines the relationship and diversification ability of Islamic stock indices /conventional stocks indices and Real Estate Investment Trust (REITs).To represent conditional dependency between stocks and REITs in a more realistic way, new modeling technique, time-varying copula with switching dependence is used. It represents reliance structure more accurately and realistically than a single copula regime as dependence may alter between positive and negative correlation regimes with time. The fluctuating behavior of markets has significant impact on economic variables; especially the downward trend during crisis. Overall addition of Real Estate Investment Trust in stocks portfolio reduces risks and provide better diversification benefit. Results varied depending upon the circumstances of the country. REITs provides better diversification benefits for Islamic Stocks, when both markets are bearish and can provide hedging benefit for conventional stocks portfolio.Keywords: conventional stocks, real estate investment trust, copula, diversification, risk spillover, safe heaven
Procedia PDF Downloads 8440077 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset
Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba
Abstract:
We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process
Procedia PDF Downloads 26140076 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying
Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job
Abstract:
As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning
Procedia PDF Downloads 11340075 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality
Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya
Abstract:
Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.Keywords: augmented reality, data analytics, catch room, marketing and sales
Procedia PDF Downloads 23740074 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach
Authors: Jens Ehm
Abstract:
Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.Keywords: production, logistics, integrated scheduling, real-time scheduling
Procedia PDF Downloads 37440073 Optimization Based Obstacle Avoidance
Authors: R. Dariani, S. Schmidt, R. Kasper
Abstract:
Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.Keywords: autonomous driving, obstacle avoidance, optimal control, path planning
Procedia PDF Downloads 36940072 Non Interferometric Quantitative Phase Imaging of Yeast Cells
Authors: P. Praveen Kumar, P. Vimal Prabhu, Renu John
Abstract:
In biology most microscopy specimens, in particular living cells are transparent. In cell imaging, it is hard to create an image of a cell which is transparent with a very small refractive index change with respect to the surrounding media. Various techniques like addition of staining and contrast agents, markers have been applied in the past for creating contrast. Many of the staining agents or markers are not applicable to live cell imaging as they are toxic. In this paper, we report theoretical and experimental results from quantitative phase imaging of yeast cells with a commercial bright field microscope. We reconstruct the phase of cells non-interferometrically based on the transport of intensity equations (TIE). This technique estimates the axial derivative from positive through-focus intensity measurements. This technique allows phase imaging using a regular microscope with white light illumination. We demonstrate nano-metric depth sensitivity in imaging live yeast cells using this technique. Experimental results will be shown in the paper demonstrating the capability of the technique in 3-D volume estimation of living cells. This real-time imaging technique would be highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any pre-processing of samples.Keywords: axial derivative, non-interferometric imaging, quantitative phase imaging, transport of intensity equation
Procedia PDF Downloads 38440071 Studying the Spatial Aspects of Visual Attention Processing in Global Precedence Paradigm
Authors: Shreya Borthakur, Aastha Vartak
Abstract:
This behavioral experiment aimed to investigate the global precedence phenomenon in a South Asian sample and its correlation with mobile screen time. The global precedence effect refers to the tendency to process overall structure before attending to specific details. Participants completed attention tasks involving global and local stimuli with varying consistencies. The results showed a tendency towards local precedence, but no significant differences in reaction times were found between consistency levels or attention conditions. However, the correlation analysis revealed that participants with higher screen time exhibited a stronger negative correlation with local attention, suggesting that excessive screen usage may impact perceptual organization. Further research is needed to explore this relationship and understand the influence of screen time on cognitive processing.Keywords: global precedence, visual attention, perceptual organization, screen time, cognition
Procedia PDF Downloads 6840070 Biosensors as Analytical Tools in Legume Processing
Authors: S. V. Ncube, A. I. O. Jideani, E. T. Gwata
Abstract:
The plight of food insecurity in developing countries has led to renewed interest in underutilized legumes. Their nutritional versatility, desirable functionality, pharmaceutical value and inherent bioactive compounds have drawn the attention of researchers. This has provoked the development of value added products with the aim of commercially exploiting their full potential. However processing of these legumes leads to changes in nutritional composition as affected by processing variables like pH, temperature and pressure. There is therefore a need for process control and quality assurance during production of the value added products. However, conventional methods for microbiological and biochemical identification are labour intensive and time-consuming. Biosensors offer rapid and affordable methods to assure the quality of the products. They may be used to quantify nutrients and anti-nutrients in the products while manipulating and monitoring variables such as pH, temperature, pressure and oxygen that affect the quality of the final product. This review gives an overview of the types of biosensors used in the food industry, their advantages and disadvantages and their possible application in processing of legumes.Keywords: legume processing, biosensors, quality control, nutritional versatility
Procedia PDF Downloads 49240069 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37540068 African Swine Fewer Situation and Diagnostic Methods in Lithuania
Authors: Simona Pileviciene
Abstract:
On 24th January 2014, Lithuania notified two primary cases of African swine fever (ASF) in wild boars. The animals were tested positive for ASF virus (ASFV) genome by real-time PCR at the National Reference Laboratory for ASF in Lithuania (NRL), results were confirmed by the European Union Reference Laboratory for African swine fever (CISA-INIA). Intensive wild and domestic animal monitoring program was started. During the period of 2014-2017 ASF was confirmed in two large commercial pig holding with the highest biosecurity. Pigs were killed and destroyed. Since 2014 ASF outbreak territory from east and south has expanded to the middle of Lithuania. Diagnosis by PCR is one of the highly recommended diagnostic methods by World Organization for Animal Health (OIE) for diagnosis of ASF. The aim of the present study was to compare singleplex real-time PCR assays to a duplex assay allowing the identification of ASF and internal control in a single PCR tube and to compare primers, that target the p72 gene (ASF 250 bp and ASF 75 bp) effectivity. Multiplex real-time PCR assays prove to be less time consuming and cost-efficient and therefore have a high potential to be applied in the routine analysis. It is important to have effective and fast method that allows virus detection at the beginning of disease for wild boar population and in outbreaks for domestic pigs. For experiments, we used reference samples (INIA, Spain), and positive samples from infected animals in Lithuania. Results show 100% sensitivity and specificity.Keywords: African swine fewer, real-time PCR, wild boar, domestic pig
Procedia PDF Downloads 16640067 Effect of Sub Supercritical CO2 Processing on Microflora and Shelf Life Tempe
Authors: M. Kustyawati, F. Pratama, D. Saputra, A. Wijaya
Abstract:
Tempe composes of not only molds but also bacteria and yeasts. The structure of microorganisms needs to be in balance number in order the tempe to be an acceptable quality for an extended time. Sub supercritical carbon dioxide can be a promising preservation method for tempe as it induces microbial inactivation avoiding alterations of its quality attributes. Fresh tempe were processed using supercritical and sub supercritical CO2 for a defined holding times, then the growth ability of molds and bacteria were analyzed. The results showed that the supercritical CO2 processing for 5 minutes reduced the number of bacteria and molds to 0.30 log cycle and 1.17 log cycles, respectively. In addition, sub supercritical CO2 processing for 20 minutes had fungicidal effect against mold tempe; whereas, the sub supercritical CO2 for 10 minutes had reducing effect against bacteria tempe, and had fungistatic affect against mold tempe. It suggested that sub-supercritical CO2 processing for 10 min could be useful alternative technique for preservation of tempe.Keywords: tempe, sub supercritical CO2, fungistatic effect, preservation
Procedia PDF Downloads 26940066 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles
Authors: Masood Roohi, Amir Taghavipour
Abstract:
This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time
Procedia PDF Downloads 35240065 AI In Health and Wellbeing - A Seven-Step Engineering Method
Authors: Denis Özdemir, Max Senges
Abstract:
There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.Keywords: recommender systems, natural language processing, health apps, engineering methods
Procedia PDF Downloads 16540064 Modified InVEST for Whatsapp Messages Forensic Triage and Search through Visualization
Authors: Agria Rhamdhan
Abstract:
WhatsApp as the most popular mobile messaging app has been used as evidence in many criminal cases. As the use of mobile messages generates large amounts of data, forensic investigation faces the challenge of large data problems. The hardest part of finding this important evidence is because current practice utilizes tools and technique that require manual analysis to check all messages. That way, analyze large sets of mobile messaging data will take a lot of time and effort. Our work offers methodologies based on forensic triage to reduce large data to manageable sets resulting easier to do detailed reviews, then show the results through interactive visualization to show important term, entities and relationship through intelligent ranking using Term Frequency-Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA) Model. By implementing this methodology, investigators can improve investigation processing time and result's accuracy.Keywords: forensics, triage, visualization, WhatsApp
Procedia PDF Downloads 16840063 Effect of Silver Diamine Fluoride on Reducing Fungal Adhesion on Dentin
Authors: Rima Zakzouk, Noriko Hiraishi, Mohamed Mahdi Alshahni, Koichi Makimura, Junji Tagami
Abstract:
Background and Purpose: Silver diamine fluoride (SDF) is used to prevent and arrest dental caries. The aim of this study is to evaluate the effect of SDF on reducing Candida albicans adhesion on dentin. Materials and Methods: Bovine dentin disks (6×6 mm) were cut by Isomet and polished using grit silicon carbide papers down to 2000 in order to obtain flat dentin surfaces. Samples were divided into two groups. The first group (SDF group) was treated with 38% SDF for 3 min, while the other group (control group) did not undergo SDF treatment. All samples were exposed to C. albicans suspension, washed after 6 hours incubation at 30 °C before to be tested using XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) and real time PCR approaches. Statistical analyses of the results were performed at the significance level α = 0.05. Results: SDF inhibited C. albicans adhesion onto dentin. A significant difference was found between the SDF and control groups in both XTT and real time PCR tests. Conclusion: Using SDF to arrest the caries, could inhibit the Candida growth on dentin.Keywords: silver diamine fluoride, dentin, real time PCR, XTT
Procedia PDF Downloads 16240062 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions
Procedia PDF Downloads 5240061 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 52440060 Genetic Data of Deceased People: Solving the Gordian Knot
Authors: Inigo de Miguel Beriain
Abstract:
Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people
Procedia PDF Downloads 15440059 A Low Cost and Reconfigurable Experimental Platform for Engineering Lab Education
Authors: S. S. Kenny Lee, C. C. Kong, S. K. Ting
Abstract:
Teaching engineering lab provides opportunity for students to practice theories learned through physical experiment in the laboratory. However, building laboratories to accommodate increased number of students are expensive, making it impossible for an educational institution to afford the high expenses. In this paper, we develop a low cost and remote platform to aid teaching undergraduate students. The platform is constructed where the real experiment setting up in laboratory can be reconfigure and accessed remotely, the aim is to increase student’s desire to learn at which they can interact with the physical experiment using network enabled devices at anywhere in the campus. The platform is constructed with Raspberry Pi as a main control board that provides communication between computer interfaces to the actual experiment preset in the laboratory. The interface allows real-time remote viewing and triggering the physical experiment in the laboratory and also provides instructions and learning guide about the experimental.Keywords: engineering lab, low cost, network, remote platform, reconfigure, real-time
Procedia PDF Downloads 30840058 Optimization in Friction Stir Processing Method with Emphasis on Optimized Process Parameters Laboratory Research
Authors: Atabak Rahimzadeh Ilkhch
Abstract:
Friction stir processing (FSP) has promised for application of thermo-mechanical processing techniques where aims to change the micro structural and mechanical properties of materials in order to obtain high performance and reducing the production time and cost. There are lots of studies focused on the microstructure of friction stir welded aluminum alloys. The main focus of this research is on the grain size obtained in the weld zone. Moreover in second part focused on temperature distribution effect over the entire weld zone and its effects on the microstructure. Also, there is a need to have more efforts on investigating to obtain the optimal value of effective parameters such as rotational speed on microstructure and to use the optimum tool designing method. the final results of this study will be present the variation of structural and mechanical properties of materials in the base of applying Friction stir processing and effect of (FSP) processing and tensile testing on surface quality. in the hand, this research addresses the FSP f AA-7020 aluminum and variation f ration of rotation and translational speeds.Keywords: friction stir processing, AA-7020, thermo-mechanical, microstructure, temperature
Procedia PDF Downloads 280