Search results for: inputs
169 Effects of Partial Sleep Deprivation on Prefrontal Cognitive Functions in Adolescents
Authors: Nurcihan Kiris
Abstract:
Restricted sleep is common in young adults and adolescents. The results of a few objective studies of sleep deprivation on cognitive performance were not clarified. In particular, the effect of sleep deprivation on the cognitive functions associated with frontal lobe such as attention, executive functions, working memory is not well known. The aim of this study is to investigate the effect of partial sleep deprivation experimentally in adolescents on the cognitive tasks of frontal lobe including working memory, strategic thinking, simple attention, continuous attention, executive functions, and cognitive flexibility. Subjects of the study were recruited from voluntary students of Cukurova University. Eighteen adolescents underwent four consecutive nights of monitored sleep restriction (6–6.5 hr/night) and four nights of sleep extension (10–10.5 hr/night), in counterbalanced order, and separated by a washout period. Following each sleep period, cognitive performance was assessed, at a fixed morning time, using a computerized neuropsychological battery based on frontal lobe functions task, a timed test providing both accuracy and reaction time outcome measures. Only the spatial working memory performance of cognitive tasks was found to be statistically lower in a restricted sleep condition than the extended sleep condition. On the other hand, there was no significant difference in the performance of cognitive tasks evaluating simple attention, constant attention, executive functions, and cognitive flexibility. It is thought that especially the spatial working memory and strategic thinking skills of adolescents may be susceptible to sleep deprivation. On the other hand, adolescents are predicted to be optimally successful in ideal sleep conditions, especially in the circumstances requiring for the short term storage of visual information, processing of stored information, and strategic thinking. The findings of this study may also be associated with possible negative functional effects on the processing of academic social and emotional inputs in adolescents for partial sleep deprivation. Acknowledgment: This research was supported by Cukurova University Scientific Research Projects Unit.Keywords: attention, cognitive functions, sleep deprivation, working memory
Procedia PDF Downloads 152168 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 80167 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 67166 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 88165 The Role of Muzara’ah Islamic Financing in Supporting Smallholder Farmers among Muslim Communities: An Empirical Experience of Yobe Microfinance Bank
Authors: Sheriff Muhammad Ibrahim
Abstract:
The contemporary world has seen many agents of market liberalization, globalization, and expansion in agribusiness, which pose a big threat to the existence of smallholder farmers in the farming business or, at most, being marginalized against government interventions, investors' partnerships and further stretched by government policies in an effort to promote subsistent farming that can generate profits and speedy growth through attracting foreign businesses. The consequence of these modern shifts ends basically at the expense of smallholder farmers. Many scholars believed that this shift was among the major causes of urban-rural drift facing almost all communities in the World. In an effort to address these glaring economic crises, various governments at different levels and development agencies have created different programs trying to identify other sources of income generation for rural farmers. However, despite the different approaches adopted by many communities and states, the mass rural exodus continues to increase as the rural farmers continue to lose due to a lack of reliable sources for cost-efficient inputs such as agricultural extension services, mechanization supports, quality, and improved seeds, soil matching fertilizers and access to credit facilities and profitable markets for rural farmers output. Unfortunately for them, they see these agricultural requirements provided by large-scale farmers making their farming activities cheaper and yields higher. These have further created other social problems between the smallholder farmers and the large-scale farmers in many areas. This study aims to suggest the Islamic mode of agricultural financing named Muzara’ah for smallholder farmers as a microfinance banking product adopted and practiced by Yobe Microfinance Bank as a model to promote agricultural financing to be adopted in other communities. The study adopts a comparative research method to conclude that the Muzara’ah model of financing can be adopted as a valid means of financing smallholder farmers and reducing food insecurity.Keywords: Muzara'ah, Islamic finance, agricultural financing, microfinance, smallholder farmers
Procedia PDF Downloads 62164 Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing
Authors: Ahmed E. Hodaib, Muhammed A. Hashem
Abstract:
High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure.Keywords: tube-capsule, hyperloop, aerodynamic design optimization, air compressor, air bearing
Procedia PDF Downloads 329163 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation
Procedia PDF Downloads 197162 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring
Authors: Mamoon Masud, Suleman Mazhar
Abstract:
Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking
Procedia PDF Downloads 144161 EcoLife and Greed Index Measurement: An Alternative Tool to Promote Sustainable Communities and Eco-Justice
Authors: Louk Aourelien Andrianos, Edward Dommen, Athena Peralta
Abstract:
Greed, as epitomized by overconsumption of natural resources, is at the root of ecological destruction and unsustainability of modern societies. Presently economies rely on unrestricted structural greed which fuels unlimited economic growth, overconsumption, and individualistic competitive behavior. Structural greed undermines the life support system on earth and threatens ecological integrity, social justice and peace. The World Council of Churches (WCC) has developed a program on ecological and economic justice (EEJ) with the aim to promote an economy of life where the economy is embedded in society and society in ecology. This paper aims at analyzing and assessing the economy of life (EcoLife) by offering an empirical tool to measure and monitor the root causes and effects of unsustainability resulting from human greed on global, national, institutional and individual levels. This holistic approach is based on the integrity of ecology and economy in a society founded on justice. The paper will discuss critical questions such as ‘what is an economy of life’ and ‘how to measure and control it from the effect of greed’. A model called GLIMS, which stands for Greed Lines and Indices Measurement System is used to clarify the concept of greed and help measuring the economy of life index by fuzzy logic reasoning. The inputs of the model are from statistical indicators of natural resources consumption, financial realities, economic performance, social welfare and ethical and political facts. The outputs are concrete measures of three primary indices of ecological, economic and socio-political greed (ECOL-GI, ECON-GI, SOCI-GI) and one overall multidimensional economy of life index (EcoLife-I). EcoLife measurement aims to build awareness of an economy life and to address the effects of greed in systemic and structural aspects. It is a tool for ethical diagnosis and policy making.Keywords: greed line, sustainability indicators, fuzzy logic, eco-justice, World Council of Churches (WCC)
Procedia PDF Downloads 319160 Interference of Mild Drought Stress on Estimation of Nitrogen Status in Winter Wheat by Some Vegetation Indices
Authors: H. Tavakoli, S. S. Mohtasebi, R. Alimardani, R. Gebbers
Abstract:
Nitrogen (N) is one of the most important agricultural inputs affecting crop growth, yield and quality in rain-fed cereal production. N demand of crops varies spatially across fields due to spatial differences in soil conditions. In addition, the response of a crop to the fertilizer applications is heavily reliant on plant available water. Matching N supply to water availability is thus essential to achieve an optimal crop response. The objective of this study was to determine effect of drought stress on estimation of nitrogen status of winter wheat by some vegetation indices. During the 2012 growing season, a field experiment was conducted at the Bundessortenamt (German Plant Variety Office) Marquardt experimental station which is located in the village of Marquardt about 5 km northwest of Potsdam, Germany (52°27' N, 12°57' E). The experiment was designed as a randomized split block design with two replications. Treatments consisted of four N fertilization rates (0, 60, 120 and 240 kg N ha-1, in total) and two water regimes (irrigated (Irr) and non-irrigated (NIrr)) in total of 16 plots with dimension of 4.5 × 9.0 m. The indices were calculated using readings of a spectroradiometer made of tec5 components. The main parts were two “Zeiss MMS1 nir enh” diode-array sensors with a nominal rage of 300 to 1150 nm with less than 10 nm resolutions and an effective range of 400 to 1000 nm. The following vegetation indices were calculated: NDVI, GNDVI, SR, MSR, NDRE, RDVI, REIP, SAVI, OSAVI, MSAVI, and PRI. All the experiments were conducted during the growing season in different plant growth stages including: stem elongation (BBCH=32-41), booting stage (BBCH=43), inflorescence emergence, heading (BBCH=56-58), flowering (BBCH=65-69), and development of fruit (BBCH=71). According to the results obtained, among the indices, NDRE and REIP were less affected by drought stress and can provide reliable wheat nitrogen status information, regardless of water status of the plant. They also showed strong relations with nitrogen status of winter wheat.Keywords: nitrogen status, drought stress, vegetation indices, precision agriculture
Procedia PDF Downloads 318159 Soil-Structure Interaction in a Case Study Bridge: Seismic Response under Moderate and Strong Near-Fault Earthquakes
Authors: Nastaran Cheshmehkaboodi, Lotfi Guizani, Noureddine Ghlamallah
Abstract:
Seismic isolation proves to be a powerful technology in reducing seismic hazards and enhancing overall structural resilience. However, the performance of the technology can be influenced by various factors, including seismic inputs and soil conditions. This research aims to investigate the effects of moderate and strong earthquakes associated with different distances of the source on the seismic responses of conventional and isolated bridges, considering the soil-structure interaction effects. Two groups of moderate and strong near-fault records are applied to the conventional and isolated bridges, with and without considering the underlying soil. For this purpose, using the direct method, three soil properties representing rock, dense, and stiff soils are modeled in Abaqus software. Nonlinear time history analysis is carried out, and structural responses in terms of maximum deck acceleration, deck displacement, and isolation system displacement are studied. The comparison of dynamic responses between both earthquake groups demonstrates a consistent pattern, indicating that the bridge performance and the effects of soil-structure interaction are primarily influenced by the ground motions and their frequency contents. Low ratios of PGA/PGV are found to significantly impact all dynamic responses, resulting in higher force and displacement responses, regardless of the distance associated with the ruptured fault. In addition, displacement responses increase drastically on softer soils. Thus, meticulous consideration is crucial in designing isolation systems to avoid underestimating displacement demands and to ensure sufficient displacement capacity. Despite a lower PGA value in high seismicity areas in this study, the acceleration demand during strong earthquakes is up to 1.3 times higher in conventional bridges and up to 3 times higher in isolated bridges than in moderate earthquakes. Additionally, the displacement demand in strong earthquakes is up to 2 times higher in conventional bridges and up to 5 times higher in isolated bridges compared to moderate earthquakes, highlighting the increased force and displacement demand in strong earthquakes.Keywords: bridges, seismic isolation, near-fault, earthquake characteristics, soil-structure interaction
Procedia PDF Downloads 61158 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 144157 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa
Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel
Abstract:
Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group
Procedia PDF Downloads 107156 An Agile, Intelligent and Scalable Framework for Global Software Development
Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima
Abstract:
Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.Keywords: agile project management, agile tools/techniques, distributed teams, global software development
Procedia PDF Downloads 311155 An Ethno-Scientific Approach for Restoration of South Indian Heritage Rice Varieties
Authors: A. Sathya, C. Manojkumar, D. Visithra
Abstract:
The South Indian peninsula has rich diversity of both heritage and conventional rice varieties. With the prime focus set on high yield and increased productivity, a number of traditional/heritage rice varieties have dwindled into the forgotten past. At present, in the face of climate change, the hybrids and conventional varieties struggle for sustainable yield. The need of copious irrigation and high nutrient inputs for the hybrids and conventional varieties have cornered the farming and research community to resort to heritage rice varieties for their sturdy survival capability. An ethno-scientific effort has been taken in the Cauvery delta tracts of South India to restore these traditional/heritage rice varieties. A closer field level performance evaluation under organic condition has been undertaken for 10 heritage rice varieties. The morpho-agronomic characterization across vegetative and reproductive stages have revealed a pattern of variation in duration, plant height, number of tillers, productive tillers, etc. The shortest duration was recorded for a variety with the vernacular name of ‘Arubadaam kuruvai’. A traditional rice variety called ‘Maapillai samba’ is claimed to impart instant energy. The supernatant water of the overnight soaked cooked rice of Maapillai samba is a source of instant energy. The physico-chemical analysis of this variety is being explored for its instant nutritional boosting ability. Wide spectrum of nutritional characters including palatability and marketability preferences has also been analyzed for all these 10 heritage rice varieties. A ‘Farmer’s harvest day festival’ was organized, providing opportunity for the ‘Cauvery delta farmers’ to identify the special features and exchange their views on these standing golden ripe paddy varieties directly. The airing of their ethnic knowledge pooled with interesting scientific investigations of these 10 rich heritage rice varieties of South India undertaken will be elaborately discussed enlightening the perspectives on the pathway of resurrection and restoration of this heritage of the past.Keywords: biodiversity, conservation, heritage, rice, traditional, varieties
Procedia PDF Downloads 425154 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays
Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold
Abstract:
We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics
Procedia PDF Downloads 98153 Effects of Nutrient Source and Drying Methods on Physical and Phytochemical Criteria of Pot Marigold (Calendula offiCinalis L.) Flowers
Authors: Leila Tabrizi, Farnaz Dezhaboun
Abstract:
In order to study the effect of plant nutrient source and different drying methods on physical and phytochemical characteristics of pot marigold (Calendula officinalis L., Asteraceae) flowers, a factorial experiment was conducted based on completely randomized design with three replications in Research Laboratory of University of Tehran in 2010. Different nutrient sources (vermicompost, municipal waste compost, cattle manure, mushroom compost and control) which were applied in a field experiment for flower production and different drying methods including microwave (300, 600 and 900 W), oven (60, 70 and 80oC) and natural-shade drying in room temperature, were tested. Criteria such as drying kinetic, antioxidant activity, total flavonoid content, total phenolic compounds and total carotenoid of flowers were evaluated. Results indicated that organic inputs as nutrient source for flowers had no significant effects on quality criteria of pot marigold except of total flavonoid content, while drying methods significantly affected phytochemical criteria. Application of microwave 300, 600 and 900 W resulted in the highest amount of total flavonoid content, total phenolic compounds and antioxidant activity, respectively, while oven drying caused the lowest amount of phytochemical criteria. Also, interaction effect of nutrient source and drying method significantly affected antioxidant activity in which the highest amount of antioxidant activity was obtained in combination of vermicompost and microwave 900 W. In addition, application of vermicompost combined with oven drying at 60oC caused the lowest amount of antioxidant activity. Based on results of drying trend, microwave drying showed a faster drying rate than those oven and natural-shade drying in which by increasing microwave power and oven temperature, time of flower drying decreased whereas slope of moisture content reduction curve showed accelerated trend.Keywords: drying kinetic, medicinal plant, organic fertilizer, phytochemical criteria
Procedia PDF Downloads 334152 Multifunctionality of Cover Crops in South Texas: Looking at Multiple Benefits of Cover Cropping on Small Farms in a Subtropical Climate
Authors: Savannah Rugg, Carlo Moreno, Pushpa Soti, Alexis Racelis
Abstract:
Situated in deep South Texas, the Lower Rio Grande Valley (LRGV) is considered one the most productive agricultural regions in the southern US. With the highest concentration of organic farms in the state (Hidalgo county), the LRGV has a strong potential to be leaders in sustainable agriculture. Finding management practices that comply with organic certification and increase the health of the agroecosytem and the farmers working the land is increasingly pertinent. Cover cropping, or the intentional planting of non-cash crop vegetation, can serve multiple functions in an agroecosystem by decreasing environmental pollutants that originate from the agroecosystem, reducing inputs needed for crop production, and potentially decreasing on-farm costs for farmers—overall increasing the sustainability of the farm. Use of cover crops on otherwise fallow lands have shown to enhance ecosystem services such as: attracting native beneficial insects (pollinators), increase nutrient availability in topsoil, prevent nutrient leaching, increase soil organic matter, and reduces soil erosion. In this study, four cover crops (Lablab, Sudan Grass, Sunn Hemp, and Pearl Millet) were analyzed in the subtropical region of south Texas to see how their multiple functions enhance ecosystem services. The four cover crops were assessed to see their potential to harbor native insects, their potential to increase soil nitrogen, to increase soil organic matter, and to suppress weeds. The preliminary results suggest that these subtropical varieties of cover crops have potential to enhance ecosystem services on agricultural land in the RGV by increasing soil organic matter (in all varieties), increasing nitrogen in topsoil (Lablab, Sunn Hemp), and reducing weeds (Sudan Grass).Keywords: cover crops, ecosystem services, subtropical agriculture, sustainable agriculture
Procedia PDF Downloads 295151 Innovation Management in State-Owned-Enterprises in the Digital Transformation: An Empirical Case Study of Swiss Post
Authors: Jiayun Shen, Lorenz Wyss, Thierry Golliard, Matthias Finger
Abstract:
Innovation is widely recognized as the key for private enterprises to win the market competition. The state-owned-enterprises need to be innovative to compete in the market after the privatization as well. However, it is a lack of research to study how state-owned-enterprises manage innovation to create new products and services. Swiss Post, a Swiss state-owned-enterprises, has established a department to transform the corporate culture and foster innovation to achieve digital transformation. This paper describes the innovation management process at the Swiss Post and analyzes the impacts of the instruments, the organizational structure, and explores the barriers of innovation. This study used qualitative methods based on a review of the literature on innovation management and semi-structured interviews. Being established for over five years, the Swiss Post’s innovation management department has established a software-assisted modularized platform with systematic instruments to help the internal employees with the different innovation processes. It guides the innovators from idea creation to piloting in markets and supports with a separate financing source, with knowledge inputs and coaching, as well as with connections to external partners through the open innovation and venturing team. The platform also adapts to different business units within the corporate with a customized tailor for the various operational business units. The separate financing instruments enabled the creation and further development of new ideas; the coaching services contribute greatly to the transformation of teams’ innovation culture by providing new knowledge, thinking methods, and use cases for inspiration. It also facilitates organizational learning to help the whole corporate with the digital transformation. However, it is also confronted with a big challenge in twofold. Internally, the disruptive projects often hardly overcome the obstacles of long-established operational processes in the traditional business units; externally, the expectations of the public and restrictions from the federal government have become high hurdles for the company to stay and compete in the innovation track.Keywords: empirical case study, innovation management, state-owned-enterprise, Swiss Post
Procedia PDF Downloads 121150 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 344149 Spatial Patterns of Urban Expansion in Kuwait City between 1989 and 2001
Authors: Saad Algharib, Jay Lee
Abstract:
Urbanization is a complex phenomenon that occurs during the city’s development from one form to another. In other words, it is the process when the activities in the land use/land cover change from rural to urban. Since the oil exploration, Kuwait City has been growing rapidly due to its urbanization and population growth by both natural growth and inward immigration. The main objective of this study is to detect changes in urban land use/land cover and to examine the changing spatial patterns of urban growth in and around Kuwait City between 1989 and 2001. In addition, this study also evaluates the spatial patterns of the changes detected and how they can be related to the spatial configuration of the city. Recently, the use of remote sensing and geographic information systems became very useful and important tools in urban studies because of the integration of them can allow and provide the analysts and planners to detect, monitor and analyze the urban growth in a region effectively. Moreover, both planners and users can predict the trends of the growth in urban areas in the future with remotely sensed and GIS data because they can be effectively updated with required precision levels. In order to identify the new urban areas between 1989 and 2001, the study uses satellite images of the study area and remote sensing technology for classifying these images. Unsupervised classification method was applied to classify images to land use and land cover data layers. After finishing the unsupervised classification method, GIS overlay function was applied to the classified images for detecting the locations and patterns of the new urban areas that developed during the study period. GIS was also utilized to evaluate the distribution of the spatial patterns. For example, Moran’s index was applied for all data inputs to examine the urban growth distribution. Furthermore, this study assesses if the spatial patterns and process of these changes take place in a random fashion or with certain identifiable trends. During the study period, the result of this study indicates that the urban growth has occurred and expanded 10% from 32.4% in 1989 to 42.4% in 2001. Also, the results revealed that the largest increase of the urban area occurred between the major highways after the forth ring road from the center of Kuwait City. Moreover, the spatial distribution of urban growth occurred in cluster manners.Keywords: geographic information systems, remote sensing, urbanization, urban growth
Procedia PDF Downloads 170148 Knowledge, Attitudes and Practices of Female Students regarding Emergency Contraception at Midlands State University, Zimbabwe
Authors: P. Mambanga, T. G. Tshitangano, H. Akinsola
Abstract:
Background: Unintended pregnancies constitute a most serious public health challenge to women to an extent that they sometimes end in illegal abortions resulting in adverse consequences. However, the introduction of emergency contraception has served as the last chance for women to avoid unintended pregnancies, though, in countries like Zimbabwe the cause for underutilisation of emergency contraception has been hardly investigated. Purpose: The main purpose of this study was to assess the knowledge, attitude and practice of female students regarding emergency contraception among in preventing unintended pregnancy. Methodology: A quantitative approach using descriptive cross-sectional survey design was conducted among 319 stratified random sampled female university students of Midland State University, Zimbabwe. Self-administered close-ended questionnaire was used to collect the data. To ensure validity, the development of the instrument was guided by a wide range of literature and the inputs of experts. The instrument was retested for reliability and the responses will be comparing using Cronbach’s alpha which yielded high reliability alpha (α) value of 0.84. Data was coded and entered into a computer using Microsoft Excel 2010 and analysed using Statistical Package for Social Scientists (SPSS) version 22.0. Descriptive statistics were used to analyse data in the form of cross tabulation and the results were presented in table, graphs and pie charts. Results: The results indicated that apart from all sources of information about EC, mass media has shown to be the most famous. Although female students knows about EC, the knowledge about effective level and correct use of EC poor. The attitudes of female students at MSU are unfavourable for EC as they gave reasons like EC promotes promiscuity and it can pose risk. The practice of EC at MSU is low with only 47% of respondents said they have once use EC. Conclusion and recommendation: The study concluded the lack of actual knowledge about EC which has directly influenced attitudes and practices. The study concluded that there MSU female students has fair knowledge about EC which has resulted in negative and attitudes towards EC with few EC practices. The study, therefore, recommends the adoption and use of Health Belief Model approach in promoting the young to use EC to prevent unwanted pregnancies.Keywords: emergency contraception, knowledge, attitude, practice, female students
Procedia PDF Downloads 233147 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities
Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh
Abstract:
Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.Keywords: primary health care, health system, system domains, vital signs profile
Procedia PDF Downloads 127146 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 175145 Antecedents to Leaders’ Empowering Behavior: A Study of Team Leaders and Their Subordinates
Authors: Manjari Srivastsva, Ruta Vyas
Abstract:
The research in the area of self leadership advocates employee/team empowerment. It is well understood that empowered employees would contribute more and better to their organizational outcomes. This research is a part of an ongoing larger research in the area of empowering leadership behavior. The present research aims to understand some of the antecedents to empowering behavior of leaders such that the organizations can focus on the right elements and invest in the appropriate areas during their leadership development activities. The research is exploratory field study. Sampling is purposive, employing triadic design i.e. a manager and two of his/her subordinates are selected for data collection. The total no. of respondents is 240, with 80 managers and 160 of their direct reports. Initially focus group interview was done and based on the inputs from focus group, quantitative data was collected personally by the researchers using questionnaire. The sample is drawn from seven professionally run organization including those of Indian origin as well as multi-national companies. This study proposes to explore the constituents of empowering behavior both from leaders’ and their subordinates’ perspective and also see the relationship between some of the personal variables of leaders as an antecedent to empowering behavior. Similarly, the study aims to explore the subordinates’ perspectives as an antecedent to empowering behavior. The relationship between antecedent variables and empowering behavior is tested for moderation employing organization culture. Exploratory and confirmatory factor analysis was done to establish the validity of the questionnaires. Further hierarchical regression analysis results revealed that organization based self-esteem and global self-esteem impact leaders’ empowering behavior and this relationship is further moderated by organization culture. Team members’ perspective showed higher importance for task characteristics and members' readiness from the point of view of empowerment. The relation between task characteristics and members’ readiness was not moderated by culture. The finding from this research may be utilized by professionals to guide organizations desiring rapid and sustainable growth, to develop leaders who empower their teams such that they act as leaders themselves and become stimulants for the growth of organizations.Keywords: empowering behavior, team leaders, subordinates, self-esteem, organization culture, task characteristics, team members readiness
Procedia PDF Downloads 422144 Seismic Response of Structure Using a Three Degree of Freedom Shake Table
Authors: Ketan N. Bajad, Manisha V. Waghmare
Abstract:
Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed
Procedia PDF Downloads 137143 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 264142 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.Keywords: classification, computer vision, convolutional neural networks, drone control
Procedia PDF Downloads 209141 Income and Factor Analysis of Small Scale Broiler Production in Imo State, Nigeria
Authors: Ubon Asuquo Essien, Okwudili Bismark Ibeagwa, Daberechi Peace Ubabuko
Abstract:
The Broiler Poultry subsector is dominated by small scale production with low aggregate output. The high cost of inputs currently experienced in Nigeria tends to aggravate the situation; hence many broiler farmers struggle to break-even. This study was designed to examine income and input factors in small scale deep liter broiler production in Imo state, Nigeria. Specifically, the study examined; socio-economic characteristics of small scale deep liter broiler producing Poultry farmers; estimate cost and returns of broiler production in the area; analyze input factors in broiler production in the area and examined marketability, age and profitability of the enterprise. A multi-stage sampling technique was adopted in selecting 60 small scale broiler farmers who use deep liter system from 6 communities through the use of structured questionnaire. The socioeconomic characteristics of the broiler farmers and the profitability/ marketability age of the birds were described using descriptive statistical tools such as frequencies, means and percentages. Gross margin analysis was used to analyze the cost and returns to broiler production, while Cobb Douglas production function was employed to analyze input factors in broiler production. The result of the study revealed that the cost of feed (P<0.1), deep liter material (P<0.05) and medication (P<0.05) had a significant positive relationship with the gross return of broiler farmers in the study area, while cost of labour, fuel and day old chicks were not significant. Furthermore, Gross profit margin of the farmers who market their broiler at the 8th week of rearing was 80.7%; and 78.7% and 60.8% for farmers who market at the 10th week and 12th week of rearing, respectively. The business is, therefore, profitable but at varying degree. Government and Development partners should make deliberate efforts to curb the current rise in the prices of poultry feeds, drugs and timber materials used as bedding so as to widen the profit margin and encourage more farmers to go into the business. The farmers equally need more technical assistance from extension agents with regards to timely and profitable marketing.Keywords: broilers, factor analysis, income, small scale
Procedia PDF Downloads 79140 Geographic Information System-Based Map for Best Suitable Place for Cultivating Permanent Trees in South-Lebanon
Authors: Allaw Kamel, Al-Chami Leila
Abstract:
It is important to reduce the human influence on natural resources by identifying an appropriate land use. Moreover, it is essential to carry out the scientific land evaluation. Such kind of analysis allows identifying the main factors of agricultural production and enables decision makers to develop crop management in order to increase the land capability. The key is to match the type and intensity of land use with its natural capability. Therefore; in order to benefit from these areas and invest them to obtain good agricultural production, they must be organized and managed in full. Lebanon suffers from the unorganized agricultural use. We take south Lebanon as a study area, it is the most fertile ground and has a variety of crops. The study aims to identify and locate the most suitable area to cultivate thirteen type of permanent trees which are: apples, avocados, stone fruits in coastal regions and stone fruits in mountain regions, bananas, citrus, loquats, figs, pistachios, mangoes, olives, pomegranates, and grapes. Several geographical factors are taken as criterion for selection of the best location to cultivate. Soil, rainfall, PH, temperature, and elevation are main inputs to create the final map. Input data of each factor is managed, visualized and analyzed using Geographic Information System (GIS). Management GIS tools are implemented to produce input maps capable of identifying suitable areas related to each index. The combination of the different indices map generates the final output map of the suitable place to get the best permanent tree productivity. The output map is reclassified into three suitability classes: low, moderate, and high suitability. Results show different locations suitable for different kinds of trees. Results also reflect the importance of GIS in helping decision makers finding a most suitable location for every tree to get more productivity and a variety in crops.Keywords: agricultural production, crop management, geographical factors, Geographic Information System, GIS, land capability, permanent trees, suitable location
Procedia PDF Downloads 140