Search results for: image and telemetric data
26574 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 10826573 Maximum Entropy Based Image Segmentation of Human Skin Lesion
Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam
Abstract:
Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.Keywords: shannon, maximum entropy, Renyi, Tsallis entropy
Procedia PDF Downloads 46326572 Brand Equity Tourism Destinations: An Application in Wine Regions Comparing Visitors' and Managers' Perspectives
Abstract:
The concept of brand equity in the wine tourism area is an interesting topic to explore the factors that determine it. The aim of this study is to address this gap by investigating wine tourism destinations brand equity, and understanding the impact that the denomination of origin (DO) brand image and the destination image have on brand equity. Managing and monitoring the branding of wine tourism destinations is crucial to attract tourist arrivals. The multiplicity of stakeholders involved in the branding process calls for research that, unlike previous studies, adopts a broader perspective and incorporates an internal and an external perspective. Therefore, this gap by comparing managers’ and visitors’ approaches to wine tourism destination brand equity has been addressed. A survey questionnaire for data collection purposes was used. The hypotheses were tested using winery managers and winery visitors, each leading a different position relative to the wine tourism destination brand equity. All the interviews were conducted face-to-face. The survey instrument included several scales related to DO brand image, destination image, and wine tourism destination brand equity. All items were measured on seven-point Likert scales. Partial least squares was used to analyze the accuracy of scales, the structural model, and multi-group analysis to identify the differences in the path coefficients and to test the hypotheses. The results show that the positive influence of DO brand image on wine tourism destination brand equity is stronger for wineries than for visitors, but there are no significant differences between the two groups. However, there are significant differences in the positive effect of destination brand image on both wine tourism destination brand equity and DO brand image. The results of this study are important for consultants, practitioners, and policy makers. The gap between managers and visitors calls for the development of a number of campaigns to enhance the image that visitors hold and, thus, increase tourist arrivals. Events such as wine gatherings and gastronomic symposiums held at universities and culinary schools and participation in business meetings can enhance the perceptions and in turn, the added value, brand equity of the wine tourism destinations. The images of destinations and DOs can help strengthen the brand equity of the wine tourism destinations, especially for visitors. Thus, the development and reinforcement of favorable, strong, and unique destination associations and DO associations are important to increase that value. Joint campaigns are advisable to enhance the images of destinations and DOs and, as a consequence, the value of the wine tourism destination brand.Keywords: brand equity, managers, visitors, wine tourism
Procedia PDF Downloads 13426571 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 24826570 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 21526569 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique
Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef
Abstract:
X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.Keywords: enhancement, x-rays, pixel intensity values, MatLab
Procedia PDF Downloads 48826568 Associations Between Positive Body Image, Physical Activity and Dietary Habits in Young Adults
Authors: Samrah Saeed
Abstract:
Introduction: This study considers a measure of positive body image and the associations between body appreciation, beauty ideals internalization, dietary habits, and physical activity in young adults. Positive body image is assessed by Body Appreciation Scale 2. It is used to assess a person's acceptance of the body, the degree of positivity, and respect for the body.Regular physical activity and healthy eating arebasically important for the body, and they play an important role in creating a positive image of the body. Objectives: To identify the associations between body appreciation and beauty ideals internalization. To compare body appreciation and body ideals internalization among students of different physical activity. To explore the associations between dietary habits (unhealthy, healthy), body appreciation and body ideals internalization. Research methods and organization: Study participants were young adult students, aged 18-35, both male and female.The research questionnaire consisted of four areas: body appreciation, beauty ideals internalization, dietary habits, and physical activity.The questionnaire was created in Google Forms online survey platform.The questionnaire was filled out anonymously Result and Discussion: Physical dissatisfaction, diet, eating disorders and exercise disorders are found in young adults all over the world.Thorough nutrition helps people understand who they are by reassuring them that they are okay without judging or accepting themselves. Social media can positively influence body image in many ways.A healthy body image is important because it affect self-esteem, self-acceptance, and your attitude towards food and exercise.Keywords: pysical activity, dietary habits, body image, beauty ideals internalization, body appreciation
Procedia PDF Downloads 9826567 Barrier Lowering in Contacts between Graphene and Semiconductor Materials
Authors: Zhipeng Dong, Jing Guo
Abstract:
Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts
Procedia PDF Downloads 30426566 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 40126565 Multimedia Container for Autonomous Car
Authors: Janusz Bobulski, Mariusz Kubanek
Abstract:
The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.Keywords: an autonomous car, image processing, lidar, obstacle detection
Procedia PDF Downloads 22726564 Transmogrification of the Danse Macabre Image: Capturing the Journey towards Creativity
Authors: Javaria Farooqui
Abstract:
This study, “Transmogrification of the Danse Macabre Image: Capturing the Journey towards Creativity,” traces the evolution of the concept of Danse Macabre. In Every man death takes away the sinful when they least expect it, in Solyman and Perseda everyone falls prey to death irrespective of their deeds and in Tauba-tun-Nasuh, the sinner is plagued. The climatic point in this brief research comes with the Modern texts, The Moon and Sixpence, Roohe-e-Insani and Amédéé, ou Comment s’en débarrasser, when Danse Macabre extends its boundaries, uniting the idea of creativity with death. Similarly in the visual context, Danse Macabre image, initially a horrifying idea, becomes a part of the present day comics and serves an entertaining rather than a cathartic purpose.Keywords: Danse macabre, transmogrification, Medieval, death, character
Procedia PDF Downloads 52026563 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 31826562 An Examination of the Relationship between Adolescents' Social Media Use and Social Appearance Anxiety
Authors: Aynur Bütün Ayhan, Utku Beyazıt
Abstract:
Adolescents can be heavily influenced by social media content as they develop their identities and body images. Therefore, the intensive use of social media platforms may have important effects on their body image beliefs. In this context, the objective of the present study was to assess the relationship between adolescents' social media use and their body image concerns. The study included 265 adolescents (133 girls and 132 boys) between the ages of 15 and 17 who were attending a high school in Ankara, Türkiye. In the study, the adolescents were administered the Social Media Addiction Scale to assess their level of social media use and the Social Appearance Anxiety Scale to assess their social appearance anxiety. Prior to analysis, a normality test was applied, and it was determined that the data displayed a non-parametric distribution. As a result, a significant positive relationship (r=.322, p<.01) was found between adolescents' level of social use and social appearance anxiety. It was also determined that social media addiction and social appearance anxiety significantly differed (p<.05) according to adolescents' opinions about their own bodies, being influenced by body images they see on social media and weight perceptions. The findings suggest that social media use should be managed carefully for adolescents to develop a healthy body image.Keywords: social media, adolescent, social appearence, anxiety
Procedia PDF Downloads 2626561 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters
Authors: C. Gebauer, C. Henke, R. Vossen
Abstract:
Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator
Procedia PDF Downloads 15426560 Video Club as a Pedagogical Tool to Shift Teachers’ Image of the Child
Authors: Allison Tucker, Carolyn Clarke, Erin Keith
Abstract:
Introduction: In education, the determination to uncover privileged practices requires critical reflection to be placed at the center of both pre-service and in-service teacher education. Confronting deficit thinking about children’s abilities and shifting to holding an image of the child as capable and competent is necessary for teachers to engage in responsive pedagogy that meets children where they are in their learning and builds on strengths. This paper explores the ways in which early elementary teachers' perceptions of the assets of children might shift through the pedagogical use of video clubs. Video club is a pedagogical practice whereby teachers record and view short videos with the intended purpose of deepening their practices. The use of video club as a learning tool has been an extensively documented practice. In this study, a video club is used to watch short recordings of playing children to identify the assets of their students. Methodology: The study on which this paper is based asks the question: What are the ways in which teachers’ image of the child and teaching practices evolve through the use of video club focused on the strengths of children demonstrated during play? Using critical reflection, it aims to identify and describe participants’ experiences of examining their personally held image of the child through the pedagogical tool video club, and how that image influences their practices, specifically in implementing play pedagogy. Teachers enrolled in a graduate-level play pedagogy course record and watch videos of their own students as a means to notice and reflect on the learning that happens during play. Using a co-constructed viewing protocol, teachers identify student strengths and consider their pedagogical responses. Video club provides a framework for teachers to critically reflect in action, return to the video to rewatch the children or themselves and discuss their noticings with colleagues. Critical reflection occurs when there is focused attention on identifying the ways in which actions perpetuate or challenge issues of inherent power in education. When the image of the child held by the teacher is from a deficit position and is influenced by hegemonic dimensions of practice, critical reflection is essential in naming and addressing power imbalances, biases, and practices that are harmful to children and become barriers to their thriving. The data is comprised of teacher reflections, analyzed using phenomenology. Phenomenology seeks to understand and appreciate how individuals make sense of their experiences. Teacher reflections are individually read, and researchers determine pools of meaning. Categories are identified by each researcher, after which commonalities are named through a recursive process of returning to the data until no more themes emerge or saturation is reached. Findings: The final analysis and interpretation of the data are forthcoming. However, emergent analysis of the data collected using teacher reflections reveals the ways in which the use of video club grew teachers’ awareness of their image of the child. It shows video club as a promising pedagogical tool when used with in-service teachers to prompt opportunities for play and to challenge deficit thinking about children and their abilities to thrive in learning.Keywords: asset-based teaching, critical reflection, image of the child, video club
Procedia PDF Downloads 10526559 A Survey of Feature-Based Steganalysis for JPEG Images
Authors: Syeda Mainaaz Unnisa, Deepa Suresh
Abstract:
Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography
Procedia PDF Downloads 21726558 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 3426557 The Use of Appeals in Green Printed Advertisements: A Case of Product Orientation and Organizational Image Orientation Ads
Authors: Chutima Ruanguttamanun
Abstract:
Despite the relatively large number of studies that have examined the use of appeals in advertisements, research on the use of appeals in green advertisements is still underdeveloped and needs to be investigated further, as it is definitely a tool for marketers to create illustrious ads. In this study, content analysis was employed to examine the nature of green advertising appeals and to match the appeals with the green advertisements. Two different types of green print advertisings, product orientation and organizational image orientation were used. Thirty highly educated participants with different backgrounds were asked individually to ascertain three appeals out of thirty-four given appeals found among forty real green advertisements. To analyze participant responses and to group them based on common appeals, two-step K-mean clustering is used. The clustering solution indicates that eye-catching graphics and imaginative appeals are highly notable in both types of green ads. Depressed, meaningful and sad appeals are found to be highly used in organizational image orientation ads, whereas, corporate image, informative and natural appeals are found to be essential for product orientation ads.Keywords: advertising appeals, green marketing, green advertisement, printed advertisement
Procedia PDF Downloads 27926556 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform
Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy
Abstract:
In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.Keywords: discrete wavelet transform (DWT), contourlet transform (CT), digital image watermarking, copyright protection, geometric attack
Procedia PDF Downloads 39626555 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment
Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen
Abstract:
The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome
Procedia PDF Downloads 19326554 TACTICAL: Ram Image Retrieval in Linux Using Protected Mode Architecture’s Paging Technique
Authors: Sedat Aktas, Egemen Ulusoy, Remzi Yildirim
Abstract:
This article explains how to get a ram image from a computer with a Linux operating system and what steps should be followed while getting it. What we mean by taking a ram image is the process of dumping the physical memory instantly and writing it to a file. This process can be likened to taking a picture of everything in the computer’s memory at that moment. This process is very important for tools that analyze ram images. Volatility can be given as an example because before these tools can analyze ram, images must be taken. These tools are used extensively in the forensic world. Forensic, on the other hand, is a set of processes for digitally examining the information on any computer or server on behalf of official authorities. In this article, the protected mode architecture in the Linux operating system is examined, and the way to save the image sample of the kernel driver and system memory to disk is followed. Tables and access methods to be used in the operating system are examined based on the basic architecture of the operating system, and the most appropriate methods and application methods are transferred to the article. Since there is no article directly related to this study on Linux in the literature, it is aimed to contribute to the literature with this study on obtaining ram images. LIME can be mentioned as a similar tool, but there is no explanation about the memory dumping method of this tool. Considering the frequency of use of these tools, the contribution of the study in the field of forensic medicine has been the main motivation of the study due to the intense studies on ram image in the field of forensics.Keywords: linux, paging, addressing, ram-image, memory dumping, kernel modules, forensic
Procedia PDF Downloads 11926553 Anatomical Survey for Text Pattern Detection
Abstract:
The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction
Procedia PDF Downloads 44626552 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: augmented reality framework, server-client model, vision-based tracking, image search
Procedia PDF Downloads 27526551 Secure Image Encryption via Enhanced Fractional Order Chaotic Map
Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi
Abstract:
in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.Keywords: image encryption, logistic map, fibonacci matrix, grayscale images
Procedia PDF Downloads 31826550 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.Keywords: connected component labeling, image processing, morphological processing, optical musical recognition
Procedia PDF Downloads 42126549 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU
Procedia PDF Downloads 29126548 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels
Authors: Joshua Buli, David Pietrowski, Samuel Britton
Abstract:
Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization
Procedia PDF Downloads 8626547 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 17426546 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques
Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang
Abstract:
Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern
Procedia PDF Downloads 23826545 A Comparison between Underwater Image Enhancement Techniques
Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha
Abstract:
In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex
Procedia PDF Downloads 89