Search results for: hybrid cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2581

Search results for: hybrid cooling

2101 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 57
2100 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 446
2099 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R. H. Ladstaetter

Abstract:

Present and future lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft and future vehicles will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound (SMC), tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a new hybrid composite technology for aerospace industries, which was developed with the help of a universal innovation and development system. This system supports the management of idea generation, the methodical development of innovative technologies and the achievement of the industrial readiness of these technologies.

Keywords: development system, hybrid composite, innovation system, prepreg, sheet moulding compound

Procedia PDF Downloads 316
2098 Suitable Operating Conditions of Hot Water Generators Combined with Central Air Package Units: A Case Study of Tipco Building Group

Authors: Chalermporn Jindapeng

Abstract:

The main objective of the study of the suitable operating conditions of hot water generators combined with central air package units: a case study of Tipco Building Group was to analyze the suitable operating conditions and energy-related costs in each operating condition of hot water generators combined with central air package units which resulted in water-cooled packages. Thermal energy from vapor form refrigerants at high pressures and temperatures was exchanged with thermal energy of the water in the swimming pool that required suitable temperature control for users with the use of plate heat exchangers before refrigerants could enter the condenser in its function to change the status of vapor form refrigerants at high pressures and temperatures to liquid form at high pressures and temperatures. Thus, if this was used to replace heat pumps it could reduce the electrical energy that was used to make hot water and reduce the cost of the electrical energy of air package units including the increased efficacy of air package units. Of the analyses of the suitable operating conditions by means of the study of the elements involved with actual measurements from the system that had been installed at the Tipco Building Group hot water generators were combined with air package units which resulted in water-cooled packages with a cooling capacity of 75 tonnes. Plate heat exchangers were used in the transfer of thermal energy from refrigerants to one set of water with a heat exchanger area of 1.5 m² which was used to increase the temperature of swimming pool water that has a capacity of 240 m³. From experimental results, it was discovered after continuous temperature measurements in the swimming pool every 15 minutes that swimming pool water temperature increased by 0.78 ⁰C 0.75 ⁰C 0.74 ⁰C and 0.71 ⁰C. The rates of flow of hot water through the heat exchangers were equal to 14, 16, 18 and 20 litres per minute respectively where the swimming pool water temperature was at a constant value and when the rate of flow of hot water increased this caused hot water temperatures to decrease and the coefficient of performance of the air package units to increase from 5.9 to 6.3, 6.7, 6.9 and 7.6 while the rates of flow of hot water were equal to 14, 16, 18 and 20 litres per minute, respectively. As for the cooling systems, there were no changes and the system cooling functions were normal as the cooling systems were able to continuously transfer incoming heat for the swimming pool water which resulted in a constant pressure in the cooling system that allowed its cooling functions to work normally.

Keywords: central air package units, heat exchange, hot water generators, swimming pool

Procedia PDF Downloads 241
2097 Influence of Cryo-Grinding on Particle Size Distribution of Proso Millet Bran Fraction

Authors: Maja Benkovic, Dubravka Novotni, Bojana Voucko, Duska Curic, Damir Jezek, Nikolina Cukelj

Abstract:

Cryo-grinding is an ultra-fine grinding method used in the pharmaceutical industry, production of herbs and spices and in the production and handling of cereals, due to its ability to produce powders with small particle sizes which maintain their favorable bioactive profile. The aim of this study was to determine the particle size distributions of the proso millet (Panicum miliaceum) bran fraction grinded at cryogenic temperature (using liquid nitrogen (LN₂) cooling, T = - 196 °C), in comparison to non-cooled grinding. Proso millet bran is primarily used as an animal feed, but has a potential in food applications, either as a substrate for extraction of bioactive compounds or raw material in the bakery industry. For both applications finer particle sizes of the bran could be beneficial. Thus, millet bran was ground for 2, 4, 8 and 12 minutes using the ball mill (CryoMill, Retsch GmbH, Haan, Germany) at three grinding modes: (I) without cooling, (II) at cryo-temperature, and (III) at cryo-temperature with included 1 minute of intermediate cryo-cooling step after every 2 minutes of grinding, which is usually applied when samples require longer grinding times. The sample was placed in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm). The oscillation frequency in all three modes was 30 Hz. Particle size distributions of the bran were determined by a laser diffraction particle sizing method (Mastersizer 2000) using the Scirocco 2000 dry dispersion unit (Malvern Instruments, Malvern, UK). Three main effects of the grinding set-up were visible from the results. Firstly, grinding time at all three modes had a significant effect on all particle size parameters: d(0.1), d(0.5), d(0.9), D[3,2], D[4,3], span and specific surface area. Longer grinding times resulted in lower values of the above-listed parameters, e.g. the averaged d(0.5) of the sample (229.57±1.46 µm) dropped to 51.29±1.28 µm after 2 minutes grinding without LN₂, and additionally to 43.00±1.33 µm after 4 minutes of grinding without LN₂. The only exception was the sample ground for 12 minutes without cooling, where an increase in particle diameters occurred (d(0.5)=62.85±2.20 µm), probably due to particles adhering to one another and forming larger particle clusters. Secondly, samples with LN₂ cooling exhibited lower diameters in comparison to non-cooled. For example, after 8 minutes of non-cooled grinding d(0.5)=46.97±1.05 µm was achieved, while the LN₂ cooling enabled collection of particles with average sizes of d(0.5)=18.57±0.18 µm. Thirdly, the application of intermediate cryo-cooling step resulted in similar particle diameters (d(0.5)=15.83±0.36 µm, 12 min of grinding) as cryo-milling without this step (d(0.5)=16.33±2.09 µm, 12 min of grinding). This indicates that intermediate cooling is not necessary for the current application, which consequently reduces the consumption of LN₂. These results point out the potential beneficial effects of millet bran grinding at cryo-temperatures. Further research will show if the lower particle size achieved in comparison to non-cooled grinding could result in increased bioavailability of bioactive compounds, as well as protein digestibility and solubility of dietary fibers of the proso millet bran fraction.

Keywords: ball mill, cryo-milling, particle size distribution, proso millet (Panicum miliaceum) bran

Procedia PDF Downloads 133
2096 For Single to Multilayer Polyvinylidene Fluoride Based Polymer for Electro-Caloric Cooling

Authors: Nouh Zeggai, Lucas Debrux, Fabien Parrain, Brahim Dkhil, Martino Lobue, Morgan Almanza

Abstract:

Refrigeration and air conditioning are some of the most used energies in our daily life, especially vapor compression refrigeration. Electrocaloric material might appears as an alternative towards solid-state cooling. polyvinylidene fluoride (PVDF) based polymer has shown promising adiabatic temperature change (∆T) and entropy change (∆S). There is practically no limit to the electric field that can be applied, except the one that the material can withstand. However, when working with a large surface as required in a device, the chance to have a defect is larger and can drastically reduce the voltage breakdown, thus reducing the electrocaloric properties. In this work, we propose to study how the characteristic of a single film are transposed when going to multilayer. The laminator and the hot press appear as two interesting processes that have been investigating to achieve a multilayer film. The study is mainly focused on the breakdown field and the adiabatic temperature change, but the phase and crystallinity have also been measured. We process one layer-based PVDF and assemble them to obtain a multilayer. Pressing at hot temperature method and lamination were used for the production of the thin films. The multilayer film shows higher breakdown strength, temperature change, and crystallinity (beta phases) using the hot press technique.

Keywords: PVDF-TrFE-CFE, multilayer, electrocaloric effect, hot press, cooling device

Procedia PDF Downloads 157
2095 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading

Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki

Abstract:

Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.

Keywords: finite element, hybrid girder, shear connections, sustained loading, time dependent behavior

Procedia PDF Downloads 116
2094 Modeling and Analysis of Solar Assisted Adsorption Cooling System Using TRNSYS

Authors: M. Wajahat, M. Shoaib, A. Waheed

Abstract:

As a result of increase in world energy demand as well as the demand for heating, refrigeration and air conditioning, energy engineers are now more inclined towards the renewable energy especially solar based thermal driven refrigeration and air conditioning systems. This research is emphasized on solar assisted adsorption refrigeration system to provide comfort conditions for a building in Islamabad. The adsorption chiller can be driven by low grade heat at low temperature range (50 -80 °C) which is lower than that required for generator in absorption refrigeration system which may be furnished with the help of common flat plate solar collectors (FPC). The aim is to offset the total energy required for building’s heating and cooling demand by using FPC’s thus reducing dependency on primary energy source hence saving energy. TRNSYS is a dynamic modeling and simulation tool which can be utilized to simulate the working of a complete solar based adsorption chiller to meet the desired cooling and heating demand during summer and winter seasons, respectively. Modeling and detailed parametric analysis of the whole system is to be carried out to determine the optimal system configuration keeping in view various design constraints. Main focus of the study is on solar thermal loop of the adsorption chiller to reduce the contribution from the auxiliary devices.

Keywords: flat plate collector, energy saving, solar assisted adsorption chiller, TRNSYS

Procedia PDF Downloads 635
2093 Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks

Authors: Cesar Hernández, Diego Giral, Ingrid Páez

Abstract:

This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.

Keywords: cognitive radio, decision making, hybrid algorithm, spectrum handoff, wireless networks

Procedia PDF Downloads 520
2092 The Effect of Type of Nanoparticles on the Quenching Process

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci

Abstract:

In this study, the experiments were carried out to determine the best coolant for the quenching process among water-based silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. After the spherical test specimen was heated at high temperatures, it was suddenly plunged into the nanofluid suspensions. All experiments were performed at saturated conditions and under atmospheric pressure. Using the temperature-time data of the specimen, the cooling curves were obtained. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.

Keywords: quenching, nanofluid, pool boiling, heat transfer

Procedia PDF Downloads 276
2091 Satellite Image Classification Using Firefly Algorithm

Authors: Paramjit Kaur, Harish Kundra

Abstract:

In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.

Keywords: image classification, firefly algorithm, satellite image classification, terrain classification

Procedia PDF Downloads 383
2090 A Pilot Study on Integration of Simulation in the Nursing Educational Program: Hybrid Simulation

Authors: Vesile Unver, Tulay Basak, Hatice Ayhan, Ilknur Cinar, Emine Iyigun, Nuran Tosun

Abstract:

The aim of this study is to analyze the effects of the hybrid simulation. In this simulation, types standardized patients and task trainers are employed simultaneously. For instance, in order to teach the IV activities standardized patients and IV arm models are used. The study was designed as a quasi-experimental research. Before the implementation an ethical permission was taken from the local ethical commission and administrative permission was granted from the nursing school. The universe of the study included second-grade nursing students (n=77). The participants were selected through simple random sample technique and total of 39 nursing students were included. The views of the participants were collected through a feedback form with 12 items. The form was developed by the authors and “Patient intervention self-confidence/competence scale”. Participants reported advantages of the hybrid simulation practice. Such advantages include the following: developing connections between the simulated scenario and real life situations in clinical conditions; recognition of the need for learning more about clinical practice. They all stated that the implementation was very useful for them. They also added three major gains; improvement of critical thinking skills (94.7%) and the skill of making decisions (97.3%); and feeling as if a nurse (92.1%). In regard to the mean scores of the participants in the patient intervention self-confidence/competence scale, it was found that the total mean score for the scale was 75.23±7.76. The findings obtained in the study suggest that the hybrid simulation has positive effects on the integration of theoretical and practical activities before clinical activities for the nursing students.

Keywords: hybrid simulation, clinical practice, nursing education, nursing students

Procedia PDF Downloads 266
2089 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 256
2088 Preparation and Characterization of Hybrid Perovskite Enhanced with PVDF for Pressure Sensing

Authors: Mohamed E. Harb, Enas Moustafa, Shaker Ebrahim, Moataz Soliman

Abstract:

In this paper pressure detectors were synthesized and characterized using hybrid perovskite/PVDF composites as an active layer. Methylammonium lead iodide (MAPbI₃) was synthesized from methylammonium iodide (MAI) (CH₃NH₃I) and lead iodide (PbI₂). Composites of perovskite/PVDF using different weight ratio were prepared as the active material. PVDF with weights percentages of 6%, 8%, and 10% was used. All prepared materials were investigated by x-ray diffraction (XRD), Fourier transforms infrared spectrum (FTIR) and scanning electron microscopy (SEM). A Versastat 4 Potentiostat Galvanostat instrument was used to perform the current-voltage characteristics of the fabricated sensors. The pressure sensors exhibited a voltage increase with applying different forces. Also, the current-voltage characteristics (CV) showed different effects with applying forces. So, the results showed a good pressure sensing performance.

Keywords: perovskite semiconductor, hybrid perovskite, PVDF, Pressure sensing

Procedia PDF Downloads 183
2087 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging

Authors: Daofan Guo, Dong Yang

Abstract:

For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.

Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring

Procedia PDF Downloads 121
2086 Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda

Authors: Emile Niringiyimana, LI Ji Qing, Giovanni Dushimimana, Virginie Umwere

Abstract:

The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community.

Keywords: HOMER optimization, hybrid power system, renewable energy, NPC and solar pv systems

Procedia PDF Downloads 42
2085 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 168
2084 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems

Authors: Mojtaba Saeedinezhad, Sarah Yousefi

Abstract:

In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.

Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making

Procedia PDF Downloads 330
2083 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 148
2082 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 118
2081 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures

Authors: Moumita Sit, Chaitali Ray

Abstract:

The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.

Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress

Procedia PDF Downloads 134
2080 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 162
2079 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 140
2078 The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter

Authors: Kaihong Yu, Tetsui Yamashita, Shigeaki Shingyochi, Kazuo Matsumoto, Makoto Ohta

Abstract:

During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes.

Keywords: cardiac ablation, electrode cooling, lesion size, tissue temperature

Procedia PDF Downloads 356
2077 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling

Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere

Abstract:

In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.

Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows

Procedia PDF Downloads 296
2076 Designing an Automatic Mechanical System to Prevent Cancers Caused by Drinks

Authors: Ghasem Yazadani, Hamidreza Ahmadi, Masoud Ahmadi, Sajad Rezazadeh

Abstract:

In this paper with designing and proposing a compound of a heating and cooling system has been tried to show effect of this system on preventing esophagus cancer that can be caused by hot and cold drinks such as tea, coffee and ice water. This system has been simulated mechanically by fluent software and also has been validated by experimental way and a comprehensive result has been presented. Both of solution ways show that this system can reduce or increase temperature of drink to safe very dramatically and it can be a huge step toward consuming drinks safely and also it can be efficient about time issues. The system consists of a temperature sensor and an electronic controller that has a computer program to act automatically this task. Also this system has been presented after many different simulations and has been tried to find the best one in the point view of velocity of heating and cooling.

Keywords: fluent, heat transfer, controller, esophagus cancer

Procedia PDF Downloads 369
2075 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore

Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski

Abstract:

Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.

Keywords: solar insulation film, building energy efficiency, tropics, cooling load

Procedia PDF Downloads 177
2074 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit

Procedia PDF Downloads 109
2073 Experimental Investigation and Analysis of Wear Parameters on Al/Sic/Gr: Metal Matrix Hybrid Composite by Taguchi Method

Authors: Rachit Marwaha, Rahul Dev Gupta, Vivek Jain, Krishan Kant Sharma

Abstract:

Metal matrix hybrid composites (MMHCs) are now gaining their usage in aerospace, automotive and other industries because of their inherent properties like high strength to weight ratio, hardness and wear resistance, good creep behaviour, light weight, design flexibility and low wear rate etc. Al alloy base matrix reinforced with silicon carbide (10%) and graphite (5%) particles was fabricated by stir casting process. The wear and frictional properties of metal matrix hybrid composites were studied by performing dry sliding wear test using pin on disc wear test apparatus. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L9 Orthogonal array was selected for analysis of data. Investigation to find the influence of applied load, sliding speed and track diameter on wear rate as well as coefficient of friction during wearing process was carried out using ANOVA. Objective of the model was chosen as smaller the better characteristics to analyse the dry sliding wear resistance. Results show that track diameter has highest influence followed by load and sliding speed.

Keywords: Taguchi method, orthogonal array, ANOVA, metal matrix hybrid composites

Procedia PDF Downloads 315
2072 A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures

Authors: Butchi Kameswara Rao Chittem, Rooban Kumar

Abstract:

Cement concrete is a complex mixture of different materials. Concrete is believed to have a good fire resistance. Behaviour of concrete depends on its mix proportions and its constituent materials when it is subjected to elevated temperatures. Loss in compressive strength, loss in weight or mass, change in colour and spall of concrete are reported in literature as effects of elevated temperature on concrete. In this paper results are reported on the behaviour of normal strength concrete and high strength concrete subjected to temperatures 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching. Rebound hammer test was also conducted to study the changes in surface hardness of concrete specimens subjected to elevated temperatures.

Keywords: normal strength concrete, high-strength concrete, temperature, NDT

Procedia PDF Downloads 419